S. V. Murphy and A. Atala, 3D Bioprinting of Tissues and Organs, Nat. Biotechnol, vol.32, pp.773-785, 2014.

F. Pati, J. Gantelius, and H. A. Svahn, 3D Bioprinting of Tissue/Organ Models, Angew. Chemie -Int. Ed, vol.55, pp.4650-4665, 2016.

L. Moroni, Biofabrication strategies for 3D in vitro models and regenerative medicine, Nat. Rev. Mater, vol.3, pp.21-37, 2018.

C. S. Ong, 3D bioprinting using stem cells, Pediatr. Res, vol.83, pp.223-231, 2018.

I. T. Ozbolat and M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting, Biomaterials, vol.76, pp.321-343, 2016.

S. Bertlein, Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies, Adv. Mater, vol.29, pp.1-6, 2017.

B. Starly, R. Shirwaiker, and . Chapter, 3D Bioprinting Techniques. 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, 2015.

W. Yeong, C. Chua, K. Leong, and M. Chandrasekaran, Rapid prototyping in tissue engineering: challenges and potential, Trends Biotechnol, vol.22, pp.643-652, 2004.

J. Groll, A definition of bioinks and their distinction from biomaterial inks, Biofabrication, 2019.

M. W. Tibbitt and K. S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng, vol.103, pp.655-663, 2009.

R. Landers, U. Hübner, R. Schmelzeisen, and R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering, Biomaterials, vol.23, pp.4437-4447, 2002.

J. Gopinathan and I. Noh, Recent trends in bioinks for 3D printing, Biomater. Res, pp.1-15, 2018.

M. D. Sarker, Bioprinting Bio-fabrication of peptide-modi fi ed alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments, Bioprinting, vol.14, p.45, 2019.

C. Li, Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering, Biomed. Mater, 2019.

K. K. Moncal, V. Ozbolat, P. Datta, D. N. Heo, and I. T. Ozbolat, Thermally-controlled extrusion-based bioprinting of collagen, J. Mater. Sci. Mater. Med, 2019.

D. J. Choi, Effect of cross-linking on the dimensional stability and biocompatibility of a tailored 3D-bioprinted gelatin scaffold, Int. J. Biol. Macromol, vol.135, pp.659-667, 2019.

S. J. Bidarra, C. C. Barrias, and P. L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering, Acta Biomater, vol.10, pp.1646-1662, 2014.

Y. He, Research on the printability of hydrogels in 3D bioprinting, 2016.

A. Panwar and L. P. Tan, Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting, Molecules, 2016.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport, Tissue Eng. Part B Rev, vol.20, pp.683-696, 2014.

Z. Li, Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on, Stem Cell Behavior. Sci. Rep, vol.8, pp.1-8, 2018.

F. Pati, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink, Nat. Commun, vol.5, pp.1-11, 2014.

A. Blaeser, Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity, Adv. Healthc. Mater, 2015.

A. Skardal and A. Atala, Biomaterials for Integration with 3-D Bioprinting, Ann. Biomed. Eng, vol.43, pp.730-746, 2015.

T. Kiyozumi, Medium (DMEM/F12)-Containing Chitosan Hydrogel as Adhesive and Dressing in Autologous Skin Grafts and Accelerator in the Healing, Process. J. Biomed. Mater. Res. B. Appl. Biomater, vol.83, pp.340-344, 2005.

J. Malda, 25th Anniversary Article: Engineering Hydrogels for Biofabrication, pp.5011-5028, 2013.

K. Liu, Coordination-triggered hierarchical folate/zinc supramolecular hydrogels leading to printable biomaterials, ACS Appl. Mater. Interfaces, vol.10, pp.4530-4539, 2018.

M. A. Ramin, Cation Tuning of Supramolecular Gel Properties: A New Paradigm for Sustained Drug Delivery, Adv. Mater, vol.29, pp.2-7, 2017.

L. Latxague, A. Patwa, E. Amigues, and P. Barthélémy, Glycosyl-nucleolipids as new bioinspired amphiphiles, Molecules, vol.18, pp.12241-12263, 2013.

M. A. Ramin, L. Latxague, K. R. Sindhu, O. Chassande, and P. Barthelemy, Low molecular weight hydrogels derived from urea basedbolaamphiphiles as new injectable biomaterials. Biomaterials 1-19, 2017.

L. Latxague, Control of Stem-Cell Behavior by Fine Tuning the Supramolecular Assemblies of Low-Molecular-Weight Gelators, Angew. Chemie -Int. Ed, vol.54, pp.4517-4521, 2015.

J. W. Steed, Supramolecular gel chemistry: developments over the last decade, Chem. Commun, vol.47, pp.1379-1383, 2011.

X. Du, J. Zhou, J. Shi, and B. Xu, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials, Chem. Rev, vol.115, pp.13165-13307, 2015.

L. A. Estroff and A. D. Hamilton, Water Gelation by Small Organic Molecules Water Gelation by Small Organic Molecules, Chem. Rev, vol.104, pp.1201-1218, 2004.

W. E. Hennink and C. F. Van-nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev, vol.64, pp.223-236, 2012.

B. Desbat, Unexpected bilayer formation in langmuir films of nucleolipids, Langmuir, vol.28, pp.6816-6825, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701472

E. Hadjipanayi, V. Mudera, and R. A. Brown, Close dependence of fibroblast proliferationon collagen scaffold matrix stiffness, J. tissue Eng. Regen. Med, 2009.

A. Y. Gamal, N. N. Al-berry, A. A. Hassan, L. A. Rashed, and V. J. Iacono, In vitro evaluation of the human gingival fibroblast/gingival mesenchymal stem cell dynamics through perforated guided tissue membranes: cell migration, proliferation and membrane stiffness assay, J. Periodontal Res, vol.52, pp.628-635, 2017.

D. E. Discher, P. Janmey, and Y. L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science (80-.), vol.310, pp.1139-1143, 2005.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, pp.677-689, 2006.

S. Goktas, J. J. Dmytryk, and P. S. Mcfetridge, Biomechanical Behavior of Oral Soft Tissues, J. Periodontol, vol.82, pp.1178-1186, 2011.

M. Guvendiren, H. D. Lu, and J. A. Burdick, Shear-thinning hydrogels for biomedical applications, Soft Matter, vol.8, pp.260-272, 2012.

T. Jungst, W. Smolan, K. Schacht, T. Scheibel, and J. Groll, Strategies and Molecular Design Criteria for 3D Printable Hydrogels, Chem. Rev, vol.116, pp.1496-1539, 2016.

C. D. Lindsay, J. G. Roth, B. L. Lesavage, and S. C. Heilshorn, Bioprinting of stem cell expansion lattices, Acta Biomater, 2019.

J. Jia, Engineering alginate as bioink for bioprinting, Acta Biomater, vol.10, pp.4323-4331, 2014.

B. Duan, L. A. Hockaday, K. H. Kang, and J. Butcher, 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, J. Biomed. Mater. Res, vol.101, pp.1255-1264, 2013.

Z. Zhang, Evaluation of bioink printability for bioprinting applications, p.41304, 2018.

V. Lee, Design and Fabrication of Human Skin by Three-Dimensional Bioprinting, Tissue Eng. Part C Methods, vol.20, pp.473-484, 2014.

L. L. Wang, 3D extrusion bioprinting of single-and double-network hydrogels containing dynamic covalent crosslinks, J. Biomed. Mater. Res. 1, p.35, 2018.

A. Athirasala, A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry, Biofabrication, 2018.

K. Hölzl, Bioink properties before, during and after 3D bioprinting, Biofabrication, vol.8, p.32002, 2016.

R. L. Mauck, C. C. Wang, E. S. Oswald, G. A. Ateshian, and C. T. Hung, The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading, Osteoarthr. Cartil, vol.11, pp.879-890, 2003.

S. C. Chang, Injection molding of chondrocyte/alginate constructs in the shape of facial implants, J. Biomed. Mater. Res, vol.55, pp.503-511, 2001.

E. J. Ribot, Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively. PLoS One 1-16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02486804