J. Bellmunt, Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, N. Engl. J. Med, vol.376, pp.1015-1026, 2017.

R. L. Ferris, Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, N. Engl. J. Med, vol.375, pp.1856-1867, 2016.

R. S. Herbst, Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial, Lancet, vol.387, pp.1281-1288, 2016.

L. Horn, Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057), J. Clin. Oncol, vol.35, pp.3924-3933, 2017.

R. J. Motzer, Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma, N. Engl. J. Med, vol.373, pp.1803-1813, 2015.

C. Robert, Pembrolizumab versus Ipilimumab in Advanced Melanoma, N. Engl. J. Med, vol.372, pp.2521-2532, 2015.

E. Borcoman, Novel patterns of response under immunotherapy, Ann. Oncol, vol.30, pp.385-396, 2019.

E. Saada-bouzid, Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma, Ann. Oncol, vol.28, pp.1605-1611, 2017.

R. Ferrara, Hyperprogressive Disease in Patients With Advanced Non-Small Cell Lung Cancer Treated With PD-1/PD-L1 Inhibitors or With Single-Agent Chemotherapy, JAMA. Oncol, vol.4, pp.1543-1552, 2018.

W. W. Mellema, S. A. Burgers, and E. F. Smit, Tumor flare after start of RAF inhibition in KRAS mutated NSCLC: a case report, Lung Cancer, vol.87, pp.201-203, 2015.

S. Champiat, Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1, Clin. Cancer Res, vol.23, 1920.

S. Kato, Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate, Clin. Cancer Res, vol.23, pp.4242-4250, 2017.

X. S. Liu and E. R. Mardis, Applications of Immunogenomics to, Cancer. Cell, vol.168, pp.600-612, 2017.

T. Wartewig, PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis, Nat, vol.552, pp.121-125, 2017.

B. P. Fairfax, Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression, Sci, vol.343, p.1246949, 2014.

C. Sun, R. Mezzadra, and T. N. Schumacher, Regulation and Function of the PD-L1 Checkpoint, Immun, vol.48, pp.434-452, 2018.

D. Chowell, Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy, Sci, vol.359, pp.582-587, 2018.

T. Nomizo, Clinical Impact of Single Nucleotide Polymorphism in PD-L1 on Response to Nivolumab for Advanced Non-Small-Cell Lung Cancer Patients, Sci. Rep, vol.7, 2017.

Y. Kim, Comprehensive Clinical and Genetic Characterization of Hyperprogression Based on Volumetry in Advanced Non-Small Cell Lung Cancer Treated With Immune Checkpoint Inhibitor, J. Thorac. Oncol, vol.14, pp.1608-1618, 2019.

Y. Wang, Regulation of PD-L1: Emerging Routes for Targeting Tumor Immune Evasion, Front. Pharmacol, vol.9, 2018.

M. A. Coelho, Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA, Immun, vol.47, pp.1083-1099, 2017.

S. L. Topalian, C. G. Drake, and D. M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy, Cancer Cell, vol.27, pp.450-461, 2015.

M. Ben-nasr, PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes, Sci Transl Med, vol.9, 2017.

L. O. Sun, Spatiotemporal Control of CNS Myelination by Oligodendrocyte Programmed Cell Death through the TFEB-PUMA Axis, Cell, vol.175, pp.1811-1826, 2018.

L. D. Ward and M. Kellis, HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants, Nucleic Acids Res, vol.40, pp.930-934, 2012.

S. Yoon, Prognostic relevance of genetic variants involved in immune checkpoints in patients with colorectal cancer, J. Cancer Res. Clin. Oncol, vol.142, pp.1775-1780, 2016.

M. Shibuya, Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti-and Pro-Angiogenic Therapies, Genes. Cancer, vol.2, pp.1097-1105, 2011.

M. Miettinen, M. S. Rikala, J. Rys, J. Lasota, and Z. F. Wang, Vascular endothelial growth factor receptor 2 as a marker for malignant vascular tumors and mesothelioma: an immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors, Am. J. Surg. Pathol, vol.36, pp.629-639, 2012.

P. Zhu, C. Hu, K. Hui, and X. Jiang, The role and significance of VEGFR2(+) regulatory T cells in tumor immunity, Onco Targets Ther, vol.10, pp.4315-4319, 2017.

D. M. Glubb, Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer, Clin. Cancer Res, vol.17, pp.5257-5267, 2011.

J. Y. Kim, Hyperprogressive Disease during Anti-PD-1 (PDCD1) / PD-L1 (CD274) Therapy: A Systematic Review and Meta-Analysis, Cancers (Basel), vol.11, 2019.

I. Hwang, I. Park, S. K. Yoon, and J. L. Lee, Hyperprogressive Disease in Patients With Urothelial Carcinoma or Renal Cell Carcinoma Treated With PD-1/PD-L1 Inhibitors, Clin Genitourin Cancer, 2019.

M. Nishino, Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements, Clin. Cancer Res, vol.19, pp.3936-3943, 2013.

L. Seymour, iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics, Lancet Oncol, vol.18, issue.17, pp.30074-30082, 2017.

J. D. Wolchok, Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria, Clin. Cancer Res, vol.15, pp.7412-7420, 2009.

M. López-ratón, M. X. Rodríguez-Álvarez, C. Cadarso-suárez, and F. Gude-sampedro, OptimalCutpoints: an R package for selecting optimal cutpoints in diagnostic tests, J. Stat. Softw, vol.61, pp.1-36, 2014.