O. Barel, Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9, Am. J. Hum. Genet, vol.83, pp.193-199, 2008.

J. M. Graham, KCNK9 imprinting syndrome-further delineation of a possible treatable disorder, Am. J. Med. Genet. Part A, vol.170, pp.2632-2637, 2016.

N. Ruf, Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human, Hum. Mol. Genet, vol.16, pp.2591-2599, 2007.

F. Court, The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus, Epigenetics Chromatin, vol.7, p.5, 2014.

L. Fagerberg, Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics, Mol. Cell. Proteom, vol.13, pp.397-406, 2014.

Z. Rusznak, Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum, Cell. Mol. Life Sci, vol.61, pp.1532-1542, 2004.

E. M. Talley and D. A. Bayliss, Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action, J. Biol. Chem, vol.277, pp.17733-17742, 2002.

C. Marinc, C. Derst, H. Pruss, and R. W. Veh, Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain, Cell. Mol. Neurobiol, vol.34, pp.61-70, 2014.

S. G. Brickley, TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons, J. Neurosci, vol.27, pp.9329-9340, 2007.

A. M. Linden, TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics, J. Pharmacol. Exp. Therapeutics, vol.323, pp.924-934, 2007.

D. S. Pang, An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action, Proc. Natl Acad. Sci. USA, vol.106, pp.17546-17551, 2009.

A. L. Gotter, TASK-3 as a potential antidepressant target, Brain Res, vol.1416, pp.69-79, 2011.

Y. Bando, T. Hirano, and Y. Tagawa, Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex, Cereb. Cortex, vol.24, pp.1017-1029, 2014.

S. L. Berger, Histone modifications in transcriptional regulation, Curr. Opin. Genet. Dev, vol.12, pp.142-148, 2002.

J. R. Weaver and M. S. Bartolomei, Chromatin regulators of genomic imprinting, Biochimica et. biophysica acta, vol.1839, pp.169-177, 2014.

P. Singh, Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation, Mol. Cell. Biol, vol.31, pp.1757-1770, 2011.

W. Xie, Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome, Cell, vol.148, pp.816-831, 2012.

A. Guyon, Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels, J. Neurosci, vol.29, pp.2528-2533, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418407

S. M. Reppert and D. R. Weaver, Coordination of circadian timing in mammals, Nature, vol.418, pp.935-941, 2002.

S. G. Meuth, Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons, J. Neurosci, vol.23, pp.6460-6469, 2003.

E. R. Samuels and E. Szabadi, Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans, Curr. Neuropharmacol, vol.6, pp.254-285, 2008.

R. Von-coelln, Loss of locus coeruleus neurons and reduced startle in parkin null mice, Proc. Natl Acad. Sci. USA, vol.101, pp.10744-10749, 2004.

E. Szabadi, Modulation of physiological reflexes by pain: role of the locus coeruleus, Front. Integr. Neurosci, vol.6, p.94, 2012.

M. E. Carter, Tuning arousal with optogenetic modulation of locus coeruleus neurons, Nat. Neurosci, vol.13, pp.1526-1533, 2010.

T. Beckers, Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group, Int. J. Cancer, vol.121, pp.1138-1148, 2007.

J. Graff, Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories, Cell, vol.156, pp.261-276, 2014.

J. Akhtar, TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay, Life Sci. Alliance, vol.2, p.201900318, 2019.

T. E. Scammell, E. Arrigoni, and J. O. Lipton, Neural circuitry of wakefulness and sleep, Neuron, vol.93, pp.747-765, 2017.

O. Borodovitsyna, M. Flamini, and D. Chandler, Noradrenergic modulation of cognition in health and disease, Neural Plasticity, p.6031478, 2017.

S. R. Wersinger and L. B. Martin, Optimization of laboratory conditions for the study of social behavior, ILAR J, vol.50, pp.64-80, 2009.

Y. Kim, Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome, Nat. Med, vol.23, pp.213-222, 2017.

G. J. Sanchez, Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers, Nucleic Acids Res, vol.46, pp.1756-1776, 2018.

P. H. Huang, C. Plass, and C. S. Chen, Effects of histone deacetylase inhibitors on modulating H3K4 methylation marks-a novel cross-talk mechanism between histone-modifying enzymes, Mol. Cell. Pharmacol, vol.3, pp.39-43, 2011.

E. Calo and J. Wysocka, Modification of enhancer chromatin: what, how, and why?, Mol. Cell, vol.49, pp.825-837, 2013.

H. M. Tang, An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers, Cell Death Discov, vol.2, p.16041, 2016.

S. Zhang, Y. Fujita, R. Matsuzaki, and T. Yamashita, Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury, Cell Death Dis, vol.9, p.460, 2018.

K. B. Franklin and G. Paxinos, Paxinos and Franklin's The Mouse Brain in Stereotaxic Coordinates, 2008.

C. J. Christel, Versatile viral vector strategies for postscreening target validation and RNAi ON-target control, J. Biomolecular Screen, vol.20, pp.976-984, 2015.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, pp.402-408, 2001.

K. Radyushkin, Genetic ablation of the mammillary bodies in the Foxb1 mutant mouse leads to selective deficit of spatial working memory, Eur. J. Neurosci, vol.21, pp.219-229, 2005.

M. Subramaniam, Mutant alpha-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels, J. Neurosci, vol.34, pp.13586-13599, 2014.

B. Liss, Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription, EMBO J, vol.20, pp.5715-5724, 2001.

G. Paxinos and K. B. Franklin, The Mouse Brain in Stereotaxic Coordinates, 2008.