M. Daffé, The cell envelope of tubercle bacilli, Tuberculosis, vol.95, pp.155-158, 2015.

J. Puffal, A. García-heredia, K. C. Rahlwes, M. S. Siegrist, and Y. S. Morita, Spatial control of cell envelope biosynthesis in mycobacteria, Pathog. Dis, vol.76, 2018.

L. J. Alderwick, J. Harrison, G. S. Lloyd, and H. L. Birch, The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb, Perspect. Med, vol.5, pp.21113-21129, 2015.

D. Kaur, M. E. Guerin, H. Skovierova, P. J. Brennan, J. et al., Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis, Adv. Appl. Microbiol, vol.69, pp.23-78, 2009.

S. Bhamidi, M. S. Scherman, V. Jones, D. C. Crick, J. T. Belisle et al., Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis, J. Biol. Chem, vol.286, pp.23168-23177, 2011.

R. E. Lee, W. Li, D. Chatterjee, and R. E. Lee, Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: Structural changes in the arabinan due to ethambutol treatment and gene mutation are observed, Glycobiology, vol.15, pp.139-151, 2005.

K. J. Kieser and E. J. Rubin, How sisters grow apart: Mycobacterial growth and division, Nat. Rev. Micro, vol.12, pp.550-562, 2014.

Y. Xin, Y. Huang, and M. Mcneil, The presence of an endogenous endo-D-arabinase in Mycobacterium smegmatis and characterization of its oligoarabinoside product, Biochim. Biophys. Acta, vol.1473, pp.267-271, 1999.

C. Medline,

Y. Rombouts, B. Brust, A. K. Ojha, E. Maes, B. Coddeville et al., Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to mycolyl-arabinogalactan-peptidoglycan metabolism, J. Biol. Chem, vol.287, pp.11060-11069, 2012.

B. C. Saha, ?-L-arabinofuranosidases: Biochemistry, molecular biology and application in biotechnology, Biotechnol. Adv, vol.18, pp.403-423, 2000.

P. J. Moynihan, I. T. Cadby, N. Veerapen, M. Jankute, M. Crosatti et al., The hydrolase LpqI primes mycobacterial peptidoglycan recycling, Nat. Commun, vol.10, 2019.

E. Margolles-clark, M. Tenkanen, T. Nakari-setälä, and M. Penttilä, Cloning of genes encoding alpha-L-arabinofuranosidase and betaxylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.62, pp.3840-3846, 1996.

M. Ferrer, A. Ghazi, A. Beloqui, J. M. Vieites, N. López-cortés et al., Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen, PLoS One, vol.7, pp.38134-38145, 2012.

D. G. Naumoff, Conserved sequence motifs in levansucrases and bifunctional beta-xylosidases and alpha-L-arabinases, FEBS Lett, vol.448, pp.177-179, 1999.

J. J. Almagro-armenteros, K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther et al., SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol, vol.37, pp.420-423, 2019.

R. S. Gupta, B. Lo, and J. Son, Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera, Front. Microbiol, vol.9, 2018.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, 2014.

F. M. Dias, F. Vincent, G. Pell, J. A. Prates, M. S. Centeno et al., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A, J. Biol. Chem, vol.279, pp.25517-25526, 2004.

P. Zhou, Y. Liu, Q. Yan, Z. Chen, Z. Qin et al., Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 ?-mannosidase, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.2970-2982, 2014.

A. M. Gonçalves, C. S. Silva, T. I. Madeira, R. Coelho, D. De-sanctis et al., Endo-?-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.1468-1478, 2012.

M. Hilge, S. M. Gloor, W. Rypniewski, O. Sauer, T. D. Heightman et al., High-resolution native and complex structures of thermostable ?-mannanase from Thermomonospora fusca-substrate specificity in glycosyl hydrolase family 5, Structure, vol.6, pp.1433-1444, 1998.

R. R. Burgess and D. , Methods in Enzymology. Guide to Protein Purification, vol.463, 2009.

E. Matsunaga, Y. Higuchi, K. Morin, N. Yairo, T. Oka et al., Identification and characterization of a novel galactofuranose-specific ?-D-galactofuranosidase from Streptomyces species, PLoS One, vol.10, 2015.

R. Ota, Y. Okamoto, C. J. Vavricka, T. Oka, E. Matsunaga et al., Chemo-enzymatic synthesis of p-nitrophenyl ?-D-galactofuranosyl disaccharides from Aspergillus sp. fungaltype galactomannan, Carbohydr. Res, vol.473, pp.99-103, 2019.

O. Varela, C. Marino, and R. M. De-lederkremer, Synthesis of p-nitrophenyl ?-D-galactofuranoside. A convenient substrate for ?-galactofuranosidase, Carbohydr. Res, vol.155, pp.247-251, 1986.

A. Bordoni, C. Lima, K. Mariño, R. M. De-lederkremer, and C. Marino, Facile synthesis of methyl ?-and ?-D-[6-3 H]galactofuranosides from D-galacturonic acid. Substrates for the detection of galactofuranosidases, Carbohydr. Res, vol.343, pp.1863-1869, 2008.

G. Livingstone, F. Franks, A. , and L. , The effects of aqueous solvent structure on the mutarotation kinetics of glucose, J. Solution Chem, vol.6, pp.203-216, 1977.

S. Angyal, The composition of reducing sugars in solution, Adv. Carbohydr. Chem. Biochem, vol.42, pp.15-68, 1984.

M. Joe and T. Lowary, Synthesis of a homologous series of galactofuranose-containing mycobacterial arabinogalactan fragments, Can. J. Chem, vol.94, pp.976-988, 2016.

J. C. Van-kessel and G. F. Hatfull, Recombineering in Mycobacterium tuberculosis, Nat. Methods, vol.4, pp.147-152, 2006.

S. Carrère-kremer, M. Blaise, V. K. Singh, L. Alibaud, E. Tuaillon et al., A new dehydratase conferring innate resistance to thiacetazone and intra-amoebal survival of Mycobacterium smegmatis, Mol. Microbiol, vol.96, pp.1085-1102, 2015.

A. Wadood, M. Ghufran, A. Khan, S. S. Azam, M. Jelani et al., , 2018.

, Int. J. Biol. Macromol, vol.111, pp.82-91

C. Marino, A. Rinflerch, and R. M. De-lederkremer, Galactofuranose antigens, a target for diagnosis of fungal infections in humans, Future Sci. OA, vol.3, 2017.

B. Tefsen, E. L. Lagendijk, J. Park, M. Akeroyd, D. Schachtschabel et al., Fungal ?-arabinofuranosidases of glycosyl hydrolase families 51 and 54 show a dual arabinofuranosyl-and galactofuranosyl-hydrolyzing activity, Biol. Chem, vol.393, pp.767-775, 2012.

D. De-sanctis, J. M. Inácio, P. F. Lindley, I. De-sá-nogueira, and I. Bento, New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases, FEBS J, vol.277, pp.4562-4574, 2010.

M. Okuyama, T. Yoshida, H. Hondoh, H. Mori, M. Yao et al., Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase, FEBS Lett, vol.588, pp.3213-3217, 2014.

M. Wu, N. P. Mcnulty, D. A. Rodionov, M. S. Khoroshkin, N. W. Griffin et al., Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides, Science, vol.350, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439023

M. Schlaf and Z. Zhang, Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I: Cellulose Structure, Depolymerization and Conversion by Heterogeneous Catalysts, 2015.

X. Hong and A. J. Hopfinger, Construction, molecular modeling, and simulation of mycobacterium tuberculosis cell walls, Biomacromolecules, vol.5, pp.1052-1065, 2004.

N. Goodsmith, X. V. Guo, O. H. Vandal, J. Vaubourgeix, R. Wang et al., Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice, PLoS Pathog, vol.11, pp.1004645-1004668, 2015.

W. H. Wheat, A. L. Casali, V. Thomas, J. S. Spencer, R. Lahiri et al., Long-term survival and virulence of Mycobacterium leprae in amoebal cysts, PLoS Negl. Trop. Dis, vol.8, 2014.

P. Santucci, S. Diomandé, I. Poncin, L. Alibaud, A. Viljoen et al., Delineating the physiological roles of the PE and catalytic domains of LipY in lipid consumption in Mycobacterium-infected foamy macrophages, Infect. Immun, vol.86, pp.394-412, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860679

P. Santucci, N. Smichi, S. Diomandé, I. Poncin, V. Point et al., Dissecting the membrane lipid binding properties and lipase activity of Mycobacterium tuberculosis LipY domains, FEBS J, vol.286, pp.3164-3181, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02137694

K. C. Mishra, C. De-chastellier, Y. Narayana, P. Bifani, A. K. Brown et al., Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY, Infect. Immun, vol.76, pp.127-140, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202869

V. K. Sambandamurthy, X. Wang, B. Chen, R. G. Russell, S. Derrick et al., A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis, Nat. Med, vol.8, pp.456-460, 1991.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: A unified bioinformatics toolkit, Bioinformatics, vol.28, pp.1166-1167, 2012.

R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol, vol.4, pp.406-425, 1987.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Systematic Biol, vol.52, pp.696-704, 2003.

I. Ciucanu and F. Kerek, A simple and rapid method for the permethylation of carbohydrates, Carbohydr. Res, vol.131, pp.209-217, 1984.

G. S. Besra, Preparation of cell-wall fractions from mycobacteria, Methods Mol. Biol, vol.101, pp.91-107, 1998.

L. Vincent, Y. Kremer, C. Guérardel, and . Mariller,

A. Méry, E. Fabre, K. Takegawa, T. L. Lowary, and P. Stéphane,

L. Shen, A. Viljoen, S. Villaume, M. Joe, and I. Halloum, Loïc Chêne, arabinogalactan The endogenous galactofuranosidase GlfH1 hydrolyzes mycobacterial, vol.295, pp.5110-5123, 2020.

, J. Biol. Chem

, Access the most updated version of this article at doi