M. Larrivee, C. Lebel, and R. J. Wellinger, The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex, Genes Dev, vol.18, pp.1391-1396, 2004.

J. A. Stewart, M. F. Chaiken, F. Wang, and C. M. Price, Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation, Mutat. Res, vol.730, pp.12-19, 2012.

B. Pardo and S. Marcand, Rap1 prevents telomere fusions by nonhomologous end joining, EMBO J, vol.24, pp.3117-3127, 2005.

M. Martina, A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres, Mol. Cell. Biol, vol.32, pp.1604-1617, 2012.

D. Bonetti, Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres, PLoS Genet, vol.6, p.1000966, 2010.

M. Graf, Telomere length determines TERRA and R-Loop regulation through the cell cycle, Cell, vol.170, pp.72-85, 2017.

R. J. Wellinger and V. A. Zakian, Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end, Genetics, vol.191, pp.1073-1105, 2012.

K. Paeschke, K. R. Mcdonald, and V. A. Zakian, Telomeres: structures in need of unwinding, FEBS Lett, vol.584, pp.3760-3772, 2010.

M. Higa, M. Fujita, and K. Yoshida, DNA replication origins and fork progression at mammalian telomeres, Genes (Basel), vol.8, p.112, 2017.

J. Lingner, J. P. Cooper, and T. R. Cech, Telomerase and DNA end replication: no longer a lagging strand problem?, Science, vol.269, pp.1533-1534, 1995.

R. E. Hector, Mec1p associates with functionally compromised telomeres, Chromosoma, vol.121, pp.277-290, 2012.

A. S. , I. Greider, and C. W. , Short telomeres induce a DNA damage response in Saccharomyces cerevisiae, Mol. Biol. Cell, vol.14, pp.987-1001, 2003.

P. M. Dehe, O. Rog, M. G. Ferreira, J. Greenwood, and J. P. Cooper, Taz1 enforces cell-cycle regulation of telomere synthesis, Mol. Cell, vol.46, pp.797-808, 2012.

M. N. Simon, D. Churikov, and V. Geli, Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae, FEMS Yeast Res, vol.16, 2016.

L. Maestroni, S. Matmati, and S. Coulon, Solving the telomere replication problem, Genes (Basel), vol.8, p.55, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01787659

V. Lundblad and E. H. Blackburn, An alternative pathway for yeast telomere maintenance rescues est1-senescence, Cell, vol.73, pp.347-360, 1993.

Z. Xie, Early telomerase inactivation accelerates aging independently of telomere length, Cell, vol.160, pp.928-939, 2015.

Z. Xu, Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages, Nat. Commun, vol.6, p.7680, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308895

M. J. Mceachern and J. E. Haber, Break-induced replication and recombinational telomere elongation in yeast, Annu. Rev. Biochem, vol.75, pp.111-135, 2006.

Y. Hu, Telomerase-null survivor screening identifies novel telomere recombination regulators, PLoS Genet, vol.9, p.1003208, 2013.

S. C. Teng and V. A. Zakian, Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.19, pp.8083-8093, 1999.

J. Y. Lee, M. Kozak, J. D. Martin, E. Pennock, and F. B. Johnson, Evidence that a RecQ helicase slows senescence by resolving recombining telomeres, PLoS Biol, vol.5, p.160, 2007.

S. Le, J. K. Moore, J. E. Haber, and C. W. Greider, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, Genetics, vol.152, pp.143-152, 1999.

J. Hardy, D. Churikov, V. Geli, and M. Simon, Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA, Nat. Commun, vol.5, p.5004, 2014.

Q. Chen, A. Ijpma, and C. W. Greider, Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events, Mol. Cell. Biol, vol.21, pp.1819-1827, 2001.

A. Kalousi and E. Soutoglou, Nuclear compartmentalization of DNA repair, Curr. Opin. Genet. Dev, vol.37, pp.148-157, 2016.

V. Geli and M. Lisby, Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex, Bioessays, vol.37, pp.1287-1292, 2015.

M. Kalocsay, N. J. Hiller, and S. Jentsch, Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break, Mol. Cell, vol.33, pp.335-343, 2009.

S. Nagai, Functional targeting of DNA damage to a nuclear poreassociated SUMO-dependent ubiquitin ligase, Science, vol.322, pp.597-602, 2008.

R. Hayama, M. P. Rout, and J. Fernandez-martinez, The nuclear pore complex core scaffold and permeability barrier: variations of a common theme, Curr. Opin. Cell Biol, vol.46, pp.110-118, 2017.

C. B. Bennett, Genes required for ionizing radiation resistance in yeast, Nat. Genet, vol.29, pp.426-434, 2001.

B. Palancade, Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes, Mol. Biol. Cell, vol.18, pp.2912-2923, 2007.

S. Loeillet, Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast, DNA Repair, vol.4, pp.459-468, 2005.

B. Khadaroo, The DNA damage response at eroded telomeres and tethering to the nuclear pore complex, Nat. Cell Biol, vol.11, pp.980-987, 2009.

D. Churikov, SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination, Cell Rep, vol.15, pp.1242-1253, 2016.

C. Horigome and S. M. Gasser, SUMO wrestles breaks to the nuclear ring's edge, Cell Cycle, vol.15, pp.3011-3013, 2016.

X. A. Su, V. Dion, S. M. Gasser, and C. H. Freudenreich, Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability, Genes Dev, vol.29, pp.1006-1017, 2015.

N. C. Harper, N. T. Al-greene, M. A. Basrai, and K. D. Belanger, Mutations affecting spindle pole body and mitotic exit network function are synthetically lethal with a deletion of the nucleoporin NUP1 in S. cerevisiae, Curr. Genet, vol.53, pp.95-105, 2008.

B. O. Krogh and L. S. Symington, Recombination proteins in yeast, Annu. Rev. Genet, vol.38, pp.233-271, 2004.

M. Lisby and V. Geli, DNA damage response to eroded telomeres, Cell Cycle, vol.8, pp.3617-3618, 2009.

P. Meister, L. R. Gehlen, E. Varela, V. Kalck, and S. M. Gasser, Visualizing yeast chromosomes and nuclear architecture, Methods Enzymol, vol.470, pp.535-567, 2010.

C. H. Freudenreich and X. A. Su, Relocalization of DNA lesions to the nuclear pore complex, FEMS Yeast Res, vol.16, p.95, 2016.

V. Dion, V. Kalck, C. Horigome, B. D. Towbin, and S. Gasser, Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery, Nat. Cell Biol, vol.14, pp.502-509, 2012.

K. Forstemann and J. Lingner, Molecular basis for telomere repeat divergence in budding yeast, Mol. Cell. Biol, vol.21, pp.7277-7286, 2001.

C. Claussin and M. Chang, Multiple Rad52-mediated homology-directed repair mechanisms are required to prevent telomere attrition-induced senescence in Saccharomyces cerevisiae, PLoS Genet, vol.12, p.1006176, 2016.

R. Anand, A. Beach, K. Li, and J. Haber, Rad51-mediated double-strand break repair and mismatch correction of divergent substrates, Nature, vol.544, pp.377-380, 2017.

E. Fallet, Length-dependent processing of telomeres in the absence of telomerase, Nucleic Acids Res, vol.42, pp.3648-3665, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332608

M. Azam, Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence, Nucleic Acids Res, vol.34, pp.506-516, 2006.

S. Lambert, Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange, Mol. Cell, vol.39, pp.346-359, 2010.

J. H. Nguyen, Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats, Nucleic Acids Res, vol.45, pp.4519-4531, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526732

M. Segurado and J. F. Diffley, Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks, Genes Dev, vol.22, pp.1816-1827, 2008.

S. J. Szyjka, Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae, Genes Dev, vol.22, pp.1906-1920, 2008.

R. Bermejo, The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores, Cell, vol.146, pp.233-246, 2011.

L. A. Strawn, T. Shen, N. Shulga, D. S. Goldfarb, and S. R. Wente, Minimal nuclear pore complexes define FG repeat domains essential for transport, Nat. Cell Biol, vol.6, pp.197-206, 2004.

B. Pyhtila and M. Rexach, A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex, J. Biol. Chem, vol.278, pp.42699-42709, 2003.

P. Oza, S. L. Jaspersen, A. Miele, J. Dekker, and C. L. Peterson, Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery, Genes Dev, vol.23, pp.912-927, 2009.

D. Branzei and B. Szakal, DNA damage tolerance by recombination: molecular pathways and DNA structures, DNA Repair (Amst.), vol.44, pp.68-75, 2016.

G. M. Samadashwily, G. Raca, and S. M. Mirkin, Trinucleotide repeats affect DNA replication in vivo, Nat. Genet, vol.17, pp.298-304, 1997.

R. Pelletier, M. M. Krasilnikova, G. M. Samadashwily, R. Lahue, and S. M. Mirkin, Replication and expansion of trinucleotide repeats in yeast, Mol. Cell. Biol, vol.23, pp.1349-1357, 2003.

S. M. Liu and M. Stewart, Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. J. Mol. Biol, vol.349, pp.515-525, 2005.

V. G. Panse, B. Kuster, T. Gerstberger, and E. Hurt, Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins, Nat. Cell Biol, vol.5, pp.21-27, 2003.

L. V. Cairo and R. W. Wozniak, The nuclear transport factor Kap121 is required for stability of the Dam1 complex and mitotic kinetochore biorientation, Cell Rep, vol.14, pp.2440-2450, 2016.

C. Lemaitre, Nuclear position dictates DNA repair pathway choice, Genes Dev, vol.28, pp.2450-2463, 2014.

L. Jones, H. Houlden, and S. J. Tabrizi, DNA repair in the trinucleotide repeat disorders, Lancet Neurol, vol.16, pp.88-96, 2017.

F. P. Barthel, Systematic analysis of telomere length and somatic alterations in 31 cancer types, Nat. Genet, vol.49, pp.349-357, 2017.

R. A. Dagg, Extensive proliferation of human cancer cells with evershorter telomeres, Cell Rep, vol.19, pp.2544-2556, 2017.

N. Viceconte, Highly aggressive metastatic melanoma cells unable to maintain telomere length, Cell Rep, vol.19, pp.2529-2543, 2017.

A. Babour, The chromatin remodeler ISW1 is a quality control factor that surveys nuclear mRNP biogenesis, Cell, vol.167, pp.1201-1214, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01725201

C. A. Nino, Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket, J. Cell Biol, vol.212, pp.167-180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01725195

F. Hediger, A. Taddei, F. R. Neumann, and S. M. Gasser, Methods for visualizing chromatin dynamics in living yeast, Methods Enzymol, vol.375, pp.345-365, 2004.

R. Sundararajan, L. Gellon, R. M. Zunder, and C. H. Freudenreich, Doublestrand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae, Genetics, vol.184, pp.65-77, 2010.

E. J. Polleys and C. H. Freudenreich, Methods to study repeat fragility and instability in Saccharomyces cerevisiae, Methods Mol. Biol, vol.1672, pp.403-419, 2018.