C. R. Walkley and J. B. Li, Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs, Genome Biol, vol.18, p.205, 2017.

K. Nishikura, Editor meets silencer: crosstalk between RNA editing and RNA interference, Nat. Rev. Mol. Cell Biol, vol.7, pp.919-931, 2006.

M. H. Tan, Dynamic landscape and regulation of RNA editing in mammals, Nature, vol.550, pp.249-254, 2017.

M. Hogg, S. Paro, L. P. Keegan, and M. A. O'connell, RNA editing by mammalian ADARs, Adv. Genet, vol.73, pp.87-120, 2011.

C. R. Walkley, B. Liddicoat, and J. C. Hartner, Role of ADARs in mouse development, Curr. Top. Microbiol. Immunol, vol.353, pp.197-220, 2012.

M. Higuchi, Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2, Nature, vol.406, pp.78-81, 2000.

K. Nishikura, Functions and regulation of RNA editing by ADAR deaminases, Annu. Rev. Biochem, vol.79, pp.321-349, 2010.

J. C. Hartner, Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1, J. Biol. Chem, vol.279, pp.4894-4902, 2004.

B. J. Liddicoat, Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis, Exp. Hematol, vol.44, pp.947-963, 2016.

B. J. Liddicoat, RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself, Science, vol.349, pp.1115-1120, 2015.

K. Pestal, Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development, Immunity, vol.43, pp.933-944, 2015.

N. M. Mannion, The RNA-editing enzyme ADAR1 controls innate immune responses to RNA, Cell Rep, vol.9, pp.1482-1494, 2014.

Y. J. Crow, Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1, Am. J. Med. Genet. A, vol.167, pp.296-312, 2015.

G. I. Rice, Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature, Nat. Genet, vol.44, pp.1243-1248, 2012.

G. I. Rice, Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease, Neuropediatrics, vol.48, pp.166-184, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01761366

M. Hayashi and T. Suzuki, Dyschromatosis symmetrica hereditaria, J. Dermatol, vol.40, pp.336-343, 2013.

Y. Miyamura, Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria, Am. J. Hum. Genet, vol.73, pp.693-699, 2003.

W. Slotkin and K. Nishikura, Adenosine-to-inosine RNA editing and human disease, Genome Med, vol.5, p.105, 2013.

H. M. Sheu and H. S. Yu, Dyschromatosis symmetrica hereditaria-a histochemical and ultrastructural study, Taiwan Yi Xue Hui Za Zhi, vol.84, pp.238-249, 1985.

L. Larue, F. De-vuyst, and V. Delmas, Modeling melanoblast development, Cell Mol. Life Sci, vol.70, pp.1067-1079, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00682405

L. Douarin, N. M. Kalcheim, and C. , The Neural Crest, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02188723

R. L. Mort, I. J. Jackson, and E. E. Patton, The melanocyte lineage in development and disease, Development, vol.142, p.1387, 2015.

K. A. Nave and H. B. Werner, Myelination of the nervous system: mechanisms and functions, Annu. Rev. Cell Dev. Biol, vol.30, pp.503-533, 2014.

J. L. Salzer, Schwann cell myelination, Cold Spring Harb. Perspect. Biol, vol.7, p.20529, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00650655

K. R. Jessen and R. Mirsky, The repair Schwann cell and its function in regenerating nerves, J. Physiol, vol.594, pp.3521-3531, 2016.

C. C. Stolt and M. Wegner, Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination, Brain Res, vol.1641, pp.101-110, 2016.

C. Levy, Lineage-specific transcriptional regulation of DICER by MITF in melanocytes, Cell, vol.141, pp.994-1005, 2010.

K. H. Ma and . Svaren, J. Epigenetic control of Schwann cells. Neuroscientist, vol.24, pp.627-638, 2018.

R. Mirsky, Regulation of genes involved in Schwann cell development and differentiation. Prog, Brain Res, vol.132, pp.3-11, 2001.

J. L. Salzer, Switching myelination on and off, J. Cell Biol, vol.181, pp.575-577, 2008.

T. Pietri, O. Eder, M. Blanche, J. P. Thiery, and S. Dufour, The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo, Dev. Biol, vol.259, pp.176-187, 2003.

S. Srinivas, Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus, BMC Dev. Biol, vol.1, p.4, 2001.

P. S. Danielian, D. Muccino, D. H. Rowitch, S. K. Michael, and A. P. Mcmahon, Modification of gene activity in mouse embryos in utero by a tamoxifeninducible form of Cre recombinase, Curr. Biol, vol.8, pp.1323-1326, 1998.

I. Rusinova, Interferome v2.0: an updated database of annotated interferon-regulated genes, Nucleic Acids Res, vol.41, pp.1040-1046, 2013.

P. Topilko, Differential regulation of the zinc finger genes Krox-20 and Krox-24 (Egr-1) suggests antagonistic roles in Schwann cells, J. Neurosci. Res, vol.50, pp.702-712, 1997.

E. J. Arroyo, J. R. Bermingham, M. G. Rosenfeld, and S. S. Scherer, Promyelinating Schwann cells express Tst-1/SCIP/Oct-6, J. Neurosci, vol.18, pp.7891-7902, 1998.

T. Sauka-spengler and M. Bronner-fraser, A gene regulatory network orchestrates neural crest formation, Nat. Rev. Mol. Cell Biol, vol.9, pp.557-568, 2008.

K. H. Ma and J. Svaren, Epigenomic reprogramming in peripheral nerve injury, Neural Regen. Res, vol.11, pp.1930-1931, 2016.

P. J. Arthur-farraj, Changes in the coding and non-coding transcriptome and DNA methylome that define the Schwann cell repair phenotype after nerve injury, Cell Rep, vol.20, pp.2719-2734, 2017.

Y. Kim, The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration, PLoS ONE, vol.7, p.33664, 2012.

T. M. Brushart, Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro, Exp. Neurol, vol.247, pp.272-281, 2013.

H. P. Lin, I. Oksuz, E. Hurley, L. Wrabetz, and R. Awatramani, Microprocessor complex subunit DiGeorge syndrome critical region gene 8 (Dgcr8) is required for schwann cell myelination and myelin maintenance, J. Biol. Chem, vol.290, pp.24294-24307, 2015.

J. A. Pereira, Integrin-linked kinase is required for radial sorting of axons and Schwann cell remyelination in the peripheral nervous system, J. Cell Biol, vol.185, pp.147-161, 2009.

Y. Eshed-eisenbach, A. Gordon, N. Sukhanov, and E. Peles, Specific inhibition of secreted NRG1 types I-II by heparin enhances Schwann Cell myelination, Glia, vol.64, pp.1227-1234, 2016.

J. E. Heraud-farlow, Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis, Genome Biol, vol.18, p.166, 2017.

J. Bremer, Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination, PLoS ONE, vol.5, p.12450, 2010.

P. Topilko, Krox-20 controls myelination in the peripheral nervous system, Nature, vol.371, pp.796-799, 1994.

J. D. Verrier, S. Semple-rowland, I. Madorsky, J. E. Papin, and L. Notterpek, Reduction of Dicer impairs Schwann cell differentiation and myelination, J. Neurosci. Res, vol.88, pp.2558-2568, 2010.

K. R. Jessen, R. Mirsky, and A. C. Lloyd, Schwann cells: development and role in nerve repair, Cold Spring Harb. Perspect. Biol, vol.7, p.20487, 2015.

S. Quintes and B. G. Brinkmann, Transcriptional inhibition in Schwann cell development and nerve regeneration, Neural Regen. Res, vol.12, pp.1241-1246, 2017.

P. Gasque and M. C. Jaffar-bandjee, The immunology and inflammatory responses of human melanocytes in infectious diseases, J. Infect, vol.71, pp.413-421, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285422

T. Masaki, Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection, Cell, vol.152, pp.51-67, 2013.

T. Kondo, Six novel mutations of the ADAR1 gene in patients with dyschromatosis symmetrica hereditaria: histological observation and comparison of genotypes and clinical phenotypes, J. Dermatol, vol.35, pp.395-406, 2008.

M. Oyama, H. Shimizu, Y. Ohata, S. Tajima, and T. Nishikawa, Dyschromatosis symmetrica hereditaria (reticulate acropigmentation of Dohi): report of a Japanese family with the condition and a literature review of 185 cases, Br. J. Dermatol, vol.140, pp.491-496, 1999.

A. C. Peng, Y. A. Chen, and S. C. Chao, Dyschromatosis symmetrica hereditaria: a retrospective case series and literature review, Dermatol. Sin, vol.31, pp.19-24, 2013.

Q. Zhou, Two novel ADAR1 gene mutations in two patients with dyschromatosis symmetrical hereditaria from birth, Mol. Med. Rep, vol.15, pp.3715-3718, 2017.

J. J. Nordlund, Vitiligo in patients with metastatic melanoma: a good prognostic sign, J. Am. Acad. Dermatol, vol.9, pp.689-696, 1983.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

C. Naro, An ochestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation, Dev. Cell, vol.41, p.84, 2017.

L. Noli, A. Capalbo, C. Ogilvie, Y. Khalaf, and D. Ilic, Discordant growth of monozygotic twins starts at the blastocyst stage: a case study, Stem Cell Rep, vol.5, pp.946-953, 2015.

L. Traunmuller, A. M. Gomez, T. M. Nguyen, and P. Scheiffele, Control of neuronal synapse specification by a highly dedicated alternative splicing program, Science, vol.352, pp.982-986, 2016.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

H. Xiong, RED-ML: a novel, effective RNA editing detection method based on machine learning, vol.6, pp.1-8, 2017.

K. Opdecamp, Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor, Development, vol.124, pp.2377-2386, 1997.

, This work was supported by the Fondation ARC pour la recherche sur le cancer and AFM trampoline grant to N.B., Institut National Pour la Santé de la Recherche Médicale (INSERM), state funding from the Agence Nationale de la Recherche under the "Investissements d'avenir" program, recruitment and Brahim Nait Oumesmar for CD45 and (F4/80+CD11b+CD68) antibodies

N. G. and A. , is a beneficiary of an Institut Imagine 4th-year Ph.D. fellowship (7 months) from Fondation Bettencourt Schueller and supported by Fondation des treilles

N. G. , A. K. , and N. B. ,

N. G. and N. B. , wrote the manuscript and prepared figures; N.B. supervised the study and obtained ARC and AFM funding; L.Z. performed validation of RNA-seq data by RT-qPCR and helped with rescue experiments as well as immune cells and systemic response experiments

L. , prepared samples for electronic microscopy

S. , performed axon diameter quantification

R. P. , analyzed gut histological sections

M. P. , prepared libraries and performed sequencing

P. D. , performed bioinformatics analysis of RNA-seq data; J.M.V. prepared and analyzed electronic microscopy data

V. ,

V. P. , S. D. , L. Z. , R. P. , and J. , A. made critical revision of the manuscript and all authors approved the manuscript