Skip to Main content Skip to Navigation

PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress

Abstract : Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation. Here we report that PI3KC2α, required for ciliogenesis and PC functions, promotes the synthesis of a local pool of PI3P upon shear stress. We show that PI3KC2α depletion in cells subjected to shear stress abolishes ciliogenesis as well as the autophagy and related cell size regulation. We finally show that PI3KC2α and VPS34, the two main enzymes responsible for PI3P synthesis, have different roles during autophagy, depending on the type of cellular stress: while VPS34 is clearly required for starvation-induced autophagy, PI3KC2α participates only in shear stress-dependent autophagy.
Document type :
Journal articles
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-02493884
Contributor : Myriam Bodescot <>
Submitted on : Friday, February 28, 2020 - 11:43:01 AM
Last modification on : Saturday, March 28, 2020 - 1:55:58 AM

File

s41467-019-14086-1.pdf
Publication funded by an institution

Identifiers

Collections

Citation

Asma Boukhalfa, Anna Chiara Nascimbeni, Damien Ramel, Nicolas Dupont, Emilio Hirsch, et al.. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nature Communications, Nature Publishing Group, 2020, 11 (1), pp.294. ⟨10.1038/s41467-019-14086-1⟩. ⟨inserm-02493884⟩

Share

Metrics

Record views

70

Files downloads

167