F. Reimann and F. M. Gribble, Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion, J. Diabetes Investig, vol.7, issue.1, pp.13-19, 2016.

J. E. Campbell and D. J. Drucker, Pharmacology, physiology, and mechanisms of incretin hormone action, Cell Metab, vol.17, pp.819-837, 2013.

A. Psichas, F. Reimann, and F. M. Gribble, Gut chemosensing mechanisms, J. Clin. Invest, vol.125, pp.908-917, 2015.

F. M. Gribble and F. Reimann, Function and mechanisms of enteroendocrine cells and gut hormones in metabolism, Nat. Rev. Endocrinol, vol.15, pp.226-237, 2019.

A. Psichas, The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents, Int. J. Obes, vol.39, pp.424-429, 2005.

G. Tolhurst, Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes, vol.61, pp.364-371, 2012.

A. Wichmann, Microbial modulation of energy availability in the colon regulates intestinal transit, Cell Host Microbe, vol.14, pp.582-590, 2013.

L. B. Bindels, E. M. Dewulf, and N. M. Delzenne, GPR43/FFA2: physiopathological relevance and therapeutic prospects, Trends Pharmacol. Sci, vol.34, pp.226-232, 2013.

J. M. Ridlon, D. J. Kang, P. B. Hylemon, and J. S. Bajaj, Bile acids and the gut microbiome, Curr. Opin. Gastroenterol, vol.30, pp.332-338, 2014.

C. Thomas, TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab, vol.10, pp.167-177, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420823

O. Chávez-talavera, A. Tailleux, P. Lefebvre, and B. Staels, Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.152, p.3, 2017.

M. Trabelsi, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat. Commun, vol.6, p.7629, 2015.

F. Kuipers, V. W. Bloks, and A. K. Groen, Beyond intestinal soap-bile acids in metabolic control, Nat. Rev. Endocrinol, vol.10, pp.488-498, 2014.

C. Mazuy, A. Helleboid, B. Staels, and P. Lefebvre, Nuclear bile acid signaling through the farnesoid X. receptor, Cell. Mol. Life Sci. CMLS, vol.72, pp.1631-1650, 2015.

P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, Role of bile acids and bile acid receptors in metabolic regulation, Physiol. Rev, vol.89, pp.147-191, 2009.

S. Caron, Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol. Cell. Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

J. Prawitt, Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity, Diabetes, vol.60, pp.1861-1871, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00605738

B. Cariou, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J. Biol. Chem, vol.281, pp.11039-11049, 2006.

C. Gege, E. Hambruch, N. Hambruch, O. Kinzel, C. Kremoser et al., Current Status and Clinical Applications, 2019.

B. A. Neuschwander-tetri, Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial, Lancet Lond. Engl, vol.385, pp.956-965, 2015.

F. Li, Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity, Nat. Commun, vol.4, p.2384, 2013.

C. Jiang, Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J. Clin. Invest, vol.125, pp.386-402, 2015.

L. Zhang, Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism, p.1, 2016.

C. Jiang, Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction, Nat. Commun, vol.6, p.10166, 2015.

J. Prawitt, S. Caron, and B. Staels, Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization, Trends Endocrinol. Metab. TEM, vol.25, pp.235-244, 2014.

G. Smushkin, The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes, Diabetes, vol.62, pp.1094-1101, 2013.

B. M. Mcgettigan, Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease, J. Biol. Chem, vol.291, pp.23058-23067, 2016.

D. A. Goldspink, F. Reimann, and F. M. Gribble, Models and Tools for Studying Enteroendocrine Cells, Endocrinology, vol.159, pp.3874-3884, 2018.

R. E. Kuhre, Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: a comparison to native L-cells, J. Mol. Endocrinol, vol.56, pp.201-211, 2016.

A. J. Brown, The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem, vol.278, pp.11312-11319, 2003.

L. Poul and E. , Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation, J. Biol. Chem, vol.278, pp.25481-25489, 2003.

M. Roberfroid, Prebiotic effects: metabolic and health benefits, Br. J. Nutr, vol.104, issue.2, pp.1-63, 2010.

P. D. Cani and N. M. Delzenne, The gut microbiome as therapeutic target, Pharmacol. Ther, vol.130, pp.202-212, 2011.

L. Brooks, Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety, Mol. Metab, vol.6, pp.48-60, 2017.

P. D. Cani, S. Hoste, Y. Guiot, and N. M. Delzenne, Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats, Br. J. Nutr, vol.98, pp.32-37, 2007.

A. Everard, Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice, Diabetes, vol.60, pp.2775-2786, 2011.

E. Catry, Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction, Gut, vol.67, pp.271-283, 2018.

S. Fang, Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance, Nat. Med, vol.21, pp.159-165, 2015.

P. Pathak, Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism, J. Biol. Chem, vol.292, pp.11055-11069, 2017.

P. Pathak, Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism, Hepatol. Baltim. Md, vol.68, pp.1574-1588, 2018.

F. J. Gonzalez, C. Jiang, C. Xie, and A. D. Patterson, & Intestinal Farnesoid, X. Receptor Signaling Modulates Metabolic Disease, Dig. Dis. Basel Switz, vol.35, pp.178-184, 2017.

A. Parséus, Microbiota-induced obesity requires farnesoid X receptor, Gut, vol.66, pp.429-437, 2017.

C. Xie, An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice, Diabetes, vol.66, pp.613-626, 2017.

S. I. Sayin, Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist, Cell Metab, vol.17, pp.225-235, 2013.

L. Sun, Gut microbiota and intestinal FXR mediate the clinical benefits of metformin, Nat. Med, vol.24, pp.1919-1929, 2018.

M. Daoudi, PPAR?/? activation induces enteroendocrine L cell GLP-1 production, Gastroenterology, vol.140, pp.1564-1574, 2011.

J. J. Holst, Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery, Curr. Opin. Pharmacol, vol.13, pp.983-988, 2013.

P. Larraufie, Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery, Cell Rep, vol.26, pp.1399-1408, 2019.

L. B. Bindels, Gut microbiota-derived propionate reduces cancer cell proliferation in the liver, Br. J. Cancer, vol.107, pp.1337-1344, 2012.

C. B. Christiansen, The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon, Am. J. Physiol. Gastrointest. Liver Physiol, vol.315, pp.53-65, 2018.