M. J. Van-vliet, Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.49, pp.262-270, 2009.

L. E. Papanicolas, D. L. Gordon, S. L. Wesselingh, and G. B. Rogers, Not Just Antibiotics: Is cancer chemotherapy driving antimicrobial resistance?, Trends Microbiol, vol.26, pp.393-400, 2018.

J. Michel, J. Y. Jacobs, and T. Sacks, Bactericidal effect of combinations of antimicrobial drugs and antineoplastic antibiotics against gram-negative bacilli, Antimicrob. Agents Chemother, vol.16, pp.761-766, 1979.

A. Nyhlén and B. Ljungberg, Nilsson-Ehle, I. & Odenholt, I. Bactericidal effect of combinations of antibiotic and antineoplastic agents against Staphylococcus aureus and Escherichia coli, Chemotherapy, vol.48, pp.71-77, 2002.

J. Y. Jacobs, J. Michel, and T. Sacks, Bactericidal effect of combinations of antimicrobial drugs and antineoplastic antibiotics against Staphylococcus aureus, Antimicrob. Agents Chemother, vol.15, pp.580-586, 1979.

M. R. Moody, Effect of two cancer chemotherapeutic agents on the antibacterial activity of three antimicrobial agents, Antimicrob. Agents Chemother, vol.14, pp.737-742, 1978.

M. J. Van-vliet, H. J. Harmsen, E. S. De-bont, and W. J. Tissing, The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis, PLoS Pathog, vol.6, p.1000879, 2010.

M. Tumbarello, Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by KPC-producing Klebsiella pneumoniae, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, 2018.

H. Yigit, Novel carbapenem-hydrolyzing ?-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae, Antimicrob. Agents Chemother, vol.45, pp.1151-1161, 2001.

L. K. Logan and R. A. Weinstein, The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace, J. Infect. Dis, vol.215, pp.28-36, 2017.

P. Nordmann, T. Naas, and L. Poirel, Global spread of carbapenemase-producing Enterobacteriaceae, Emerg. Infect. Dis, vol.17, pp.1791-1798, 2011.

M. P. Freire, Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients, Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol, vol.34, pp.277-286, 2015.

D. M. Livermore, In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase, Antimicrob. Agents Chemother, vol.59, pp.5324-5330, 2015.

J. F. Mosley, Ceftazidime-avibactam (Avycaz), Pharm. Ther, vol.41, pp.479-483, 2016.

J. M. Pogue, R. A. Bonomo, and K. S. Kaye, Ceftazidime/avibactam, Meropenem/vaborbactam or both? Clinical and formulary considerations, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, 2018.

J. J. Castón, Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients, Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis, vol.59, pp.118-123, 2017.

R. K. Shields, Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections, Clin. Infect. Dis, vol.63, pp.1615-1618, 2016.

P. Gaibani, In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/ avibactam treatment, J. Antimicrob. Chemother, vol.73, pp.1525-1529, 2018.

A. Meunier, Enhanced emergence of antibiotic-resistant pathogenic bacteria after in vitro induction with cancer chemotherapy drugs, J. Antimicrob. Chemother, vol.74, p.589, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02083466

I. Matic, Highly variable mutation rates in commensal and pathogenic Escherichia coli, Science, vol.277, pp.1833-1834, 1997.

I. Bjedov, Stress-induced mutagenesis in bacteria, Science, vol.300, pp.1404-1409, 2003.

M. D. Barnes, Klebsiella pneumoniae carbapenemase-2 (KPC-2), Substitutions at ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from ?-lactamase protein engineering, 2017.

M. L. Winkler, K. M. Papp-wallace, and R. A. Bonomo, Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV ?-lactamases with single amino acid substitutions in the ?-loop, J. Antimicrob. Chemother, vol.70, pp.2279-2286, 2015.

A. P. Toolaram, K. Kümmerer, and M. Schneider, Environmental risk assessment of anti-cancer drugs and their transformation products: A focus on their genotoxicity characterization-state of knowledge and short comings, Mutat. Res. Rev. Mutat. Res. pii, pp.3-00009, 2014.

O. Tenaillon, E. Denamur, and I. Matic, Evolutionary significance of stress-induced mutagenesis in bacteria, Trends Microbiol, vol.12, pp.264-270, 2004.

, Rapid risk assessment: Emergence of resistance to ceftazidime-avibactam in carbapenem-resistant Enterobacteriaceae, 2018.

G. Haidar, Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum ?-lactamases, Antimicrob. Agents Chemother, vol.61, pp.2534-2550, 2017.

F. Compain and M. Arthur, Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 ?-lactamase, Antimicrob. Agents Chemother, vol.61, pp.451-468, 2017.

J. F. Petrosino and T. Palzkill, Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase, J. Bacteriol, vol.178, pp.1821-1828, 1996.

R. K. Shields, In vitro selection of meropenem resistance among Ceftazidime-Avibactam-resistant, Meropenem-susceptible Klebsiella pneumoniae isolates with variant KPC-3 carbapenemases, Antimicrob. Agents Chemother, vol.61, pp.79-96, 2017.

T. Naas, L. Dortet, and B. I. Iorga, Structural and Functional Aspects of Class A Carbapenemases, Curr. Drug Targets, vol.17, pp.1006-1028, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02135284

D. R. Liston and M. Davis, Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.23, pp.3489-3498, 2017.

W. E. Evans, Pharmacokinetics of anticancer drugs in children, Drug Metab. Rev, vol.14, pp.847-886, 1983.

T. Wirth, Sex and virulence in Escherichia coli: an evolutionary perspective, Mol. Microbiol, vol.60, pp.1136-1151, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00174910

E. Zankari, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother, vol.67, pp.2640-2644, 2012.

K. G. Joensen, A. M. Tetzschner, A. Iguchi, F. M. Aarestrup, and F. Scheutz, Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data, J. Clin. Microbiol, vol.53, pp.2410-2426, 2015.

H. Carol, Efficacy of CPX-351, (cytarabine:daunorubicin) liposome injection, against acute lymphoblastic leukemia (ALL) xenograft models of the Pediatric Preclinical Testing Program. Pediatr, Blood Cancer, vol.62, pp.65-71, 2015.

E. Laille, Pharmacokinetics of different formulations of oral azacitidine (CC-486) and the effect of food and modified gastric pH on pharmacokinetics in subjects with hematologic malignancies, J. Clin. Pharmacol, vol.54, pp.630-639, 2014.

G. Lönnerholm, A. Kreuger, B. Lindström, and U. Myrdal, Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability, Pediatr. Hematol. Oncol, vol.6, pp.105-112, 1989.

E. Baudry, Cyclophosphamide dose adjustment based on body weight and albuminemia in elderly patients treated with R-mini-CHOP, Cancer Chemother. Pharmacol, vol.83, pp.775-785, 2019.

R. F. Struck, Plasma Pharmacokinetics of Cyclophosphamide and Its Cytotoxic Metabolites after Intravenous versus Oral Administration in a Randomized, Crossover Trial. Cancer Res, vol.47, pp.2723-2726, 1987.

E. Brendel, Pharmacokinetic results of a phase I trial of sorafenib in combination with dacarbazine in patients with advanced solid tumors, Cancer Chemother. Pharmacol, vol.68, pp.53-61, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00619930

B. Richard, Pharmacokinetics of mitoxantrone in cancer patients treated by high-dose chemotherapy and autologous bone marrow transplantation, Br. J. Cancer, vol.65, pp.399-404, 1992.

F. Thalhammer, Continuous infusion versus intermittent administration of meropenem in critically ill patients, J. Antimicrob. Chemother, vol.43, pp.523-527, 1999.

E. Bingen, In vitro interaction between cefixime and amoxicillin-clavulanate against extended-spectrum-beta-lactamaseproducing Escherichia coli causing urinary tract infection, J. Clin. Microbiol, vol.50, pp.2540-2541, 2012.

L. Gall, T. Darlu, P. Escobar-páramo, P. Picard, B. Denamur et al., Selection-driven transcriptome polymorphism in Escherichia coli/Shigella species, Genome Res, vol.15, pp.260-268, 2005.

C. Lemaître, P. Bidet, E. Bingen, and S. Bonacorsi, Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine, BMC Microbiol, vol.12, p.115, 2012.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

B. M. Hall, C. Ma, P. Liang, and K. K. Singh, Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis, Bioinforma. Oxf. Engl, vol.25, pp.1564-1565, 2009.

A. Couce and J. Blázquez, Estimating mutation rates in low-replication experiments, Mutat. Res. Mol. Mech. Mutagen, vol.714, pp.26-32, 2011.