A. El-rahman, R. R. Harraz, O. F. Brett, S. E. Anfinogenova, Y. Mufti et al., Identification of L-and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development, Am J Physiol Heart Circ Physiol, vol.304, pp.58-71, 2013.

T. Adachi, R. M. Weisbrod, D. R. Pimentel, J. Ying, V. S. Sharov et al., S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide, Nat Med, vol.10, pp.1200-1207, 2004.

R. S. Adelstein, M. A. Conti, D. R. Hathaway, and C. B. Klee, Phosphorylation of smooth muscle myosi n light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase, J Biol Chem, vol.253, pp.8347-8350, 1978.

E. A. Aiello, A. T. Malcolm, M. P. Walsh, and W. C. Cole, Beta -adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells, Am J Physiol, vol.275, pp.448-459, 1998.

E. A. Aiello, M. P. Walsh, and W. C. Cole, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am J Physiol, vol.268, pp.926-934, 1995.

Y. Akatsuka, K. Egashira, Y. Katsuda, T. Narishige, H. Ueno et al., ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog, Cardiovasc Res, vol.28, pp.906-911, 1994.

A. P. Albert and W. A. Large, Signal transduction pathways and gating mechanisms of native TRP -like cation channels in vascular myocytes, J Physiol, vol.570, pp.45-51, 2006.

S. P. Alexander, D. Fabbro, E. Kelly, N. V. Marrion, J. A. Peters et al., THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors, Br J Pharmacol, vol.174, issue.1, pp.225-271, 2017.

S. P. Alexander, J. Striessnig, E. Kelly, N. V. Marrion, J. A. Peters et al., THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltage-gated ion channels, Br J Pharmacol, vol.174, issue.1, pp.160-194, 2017.

A. Alioua, J. P. Huggins, and E. Rousseau, PKG-I alpha phosphorylates the alpha -subunit and upregulates reconstituted GKCa channels from tracheal smooth muscle, Am J Physiol, vol.268, pp.1057-1063, 1995.

A. Alioua, Y. Tanaka, M. Wallner, F. Hofmann, P. Ruth et al., The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo, J Biol Chem, vol.273, pp.32950-32956, 1998.

I. S. Ambudkar, L. B. De-souza, and H. L. Ong, TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces, Cell Calcium, vol.63, pp.33-39, 2017.

R. Andriantsitohaina, G. J. Lagaud, A. Andre, B. Muller, and J. C. Stoclet, Effects of cGMP on calcium handling in ATP-stimulated rat resistance arteries, Am J Physiol, vol.268, pp.1223-1231, 1995.

S. L. Archer, J. M. Huang, V. Hampl, D. P. Nelson, P. J. Shultz et al., Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase, Proc Natl Acad Sci U S A, vol.91, pp.7583-7587, 1994.

W. M. Armstead, Role of ATP-sensitive K+ channels in cGMP-mediated pial artery vasodilation, Am J Physiol, vol.270, pp.423-426, 1996.

W. M. Armstead, Role of activation of calcium-sensitive K+ channels and cAMP in opioid-induced pial artery dilation, Brain Res, vol.747, pp.252-258, 1997.

W. M. Armstead, Role of nitric oxide, cyclic nucleotides, and the activation of ATP -sensitive K+ channels in the contribution of adenosine to hypoxia -induced pial artery dilation, J Cereb Blood Flow Metab, vol.17, pp.100-108, 1997.

J. Avila-medina, E. Calderon-sanchez, P. Gonzalez-rodriguez, F. Monje-quiroga, J. A. Rosado et al., Orai1 and TRPC1 Proteins Co-localize with CaV1.2 Channels to Form a Signal Complex in Vascular Smooth Muscle Cells, J Biol Chem, vol.291, pp.21148-21159, 2016.

J. Avila-medina, I. Mayoral-gonzalez, A. Dominguez-rodriguez, I. Gallardo-castillo, J. Ribas et al., The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells, Front Physiol, vol.9, p.257, 2018.

Q. Aziz, Y. Li, N. Anderson, L. Ojake, E. Tsisanova et al., Molecular and functional characterization of the endothelial ATP-sensitive potassium channel, J Biol Chem, vol.292, pp.17587-17597, 2017.

Q. Aziz, A. M. Thomas, J. Gomes, R. Ang, W. R. Sones et al., The ATPsensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control, Hypertension, vol.64, pp.523-529, 2014.

K. Baltensperger, E. Carafoli, and M. Chiesi, The Ca2+-pumping ATPase and the major substrates of the cGMP-dependent protein kinase in smooth muscle sarcolemma are distinct entities, Eur J Biochem, vol.172, pp.7-16, 1988.

M. Bardou, F. Goirand, A. Bernard, P. Guerard, M. Gatinet et al., Relaxant effects of selective phosphodiesterase inhibitors on U46619 precontracted human intralobar pulmonary arteries and role of potassium channels, J Cardiovasc Pharmacol, vol.40, pp.153-161, 2002.

S. A. Barman, Role of calcium-activated potassium channels and cyclic nucleotides on pulmonary vasoreactivity to serotonin, Am J Physiol, vol.273, pp.142-147, 1997.

S. A. Barman, S. Zhu, G. Han, and R. E. White, cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase, Am J Physiol Lung Cell Mol Physiol, vol.284, pp.1004-1011, 2003.

D. J. Beech, Orai1 calcium channels in the vasculature, Pflugers Arch, vol.463, pp.635-647, 2012.

P. Beguin, K. Nagashima, M. Nishimura, T. Gonoi, and S. Seino, PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation, EMBO J, vol.18, pp.4722-4732, 1999.

J. Bellien, R. Joannides, V. Richard, and C. Thuillez, Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?, Pharmacol Ther, vol.131, pp.1-17, 2011.

C. D. Benham, T. B. Bolton, R. J. Lang, and T. Takewaki, Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea -pig mesenteric artery, J Physiol, vol.371, pp.45-67, 1986.

Z. C. Berwick, G. A. Payne, B. Lynch, G. M. Dick, M. Sturek et al., Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation, vol.17, pp.600-607, 2010.

R. A. Bialecki and C. Stinson-fisher, KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle, Am J Physiol, vol.268, pp.152-159, 1995.

K. Bjorling, H. Morita, M. F. Olsen, A. Prodan, P. B. Hansen et al., Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltageactivated CaV 3.1 T-type Ca(2+) channel, Acta Physiol (Oxf), vol.207, pp.709-720, 2013.

L. A. Blatter and W. G. Wier, Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current, Cell Calcium, vol.15, pp.122-131, 1994.

I. Blesneac, J. Chemin, I. Bidaud, S. Huc-brandt, F. Vandermoere et al., Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties, Proc Natl Acad Sci U S A, vol.112, pp.13705-13710, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02064367

P. Bobin, M. Belacel-ouari, I. Bedioune, L. Zhang, J. Leroy et al., Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective, Arch Cardiovasc Dis, vol.109, pp.431-443, 2016.

V. M. Bolotina, S. Najibi, J. J. Palacino, P. J. Pagano, and R. A. Cohen, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle, Nature, vol.368, pp.850-853, 1994.

T. B. Bolton, Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks, J Physiol, vol.570, pp.5-11, 2006.

T. B. Bolton and Y. Imaizumi, Spontaneous transient outward currents in smooth muscle cells, Cell Calcium, vol.20, pp.141-152, 1996.

M. P. Bracamonte, J. C. Burnett, . Jr, and V. M. Miller, Activation of soluble guanylate cyclase and potassium channels contribute to relaxations to nitric oxide in smooth muscle derived from canine femoral veins, J Cardiovasc Pharmacol, vol.34, pp.407-413, 1999.

T. H. Braunstein, R. Inoue, L. Cribbs, M. Oike, Y. Ito et al., The role of L-and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles, J Vasc Res, vol.46, pp.138-151, 2009.

J. E. Brayden and M. T. Nelson, Regulation of arterial tone by activation of calcium-dependent potassium channels, Science, vol.256, pp.532-535, 1992.

R. Brenner, G. J. Perez, A. D. Bonev, D. M. Eckman, J. C. Kosek et al., Vasoregulation by the beta1 subunit of the calcium-activated potassium channel, Nature, vol.407, pp.870-876, 2000.

T. Broegger, J. C. Jacobsen, V. Secher-dam, D. M. Boedtkjer, H. Kold-petersen et al., Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries, Cardiovasc Res, vol.91, pp.685-693, 2011.

S. Bulley, Z. P. Neeb, S. K. Burris, J. P. Bannister, C. M. Thomas--gatewood et al., TMEM16A Channels Contribute to the Myogenic Response in Cerebral Arteries, Circ Res, 2012.

J. R. Burgoyne, M. Madhani, F. Cuello, R. L. Charles, J. P. Brennan et al., Cysteine redox sensor in PKGIa enables oxidant-induced activation, Science, vol.317, pp.1393-1397, 2007.

R. Bychkov, M. Gollasch, T. Steinke, C. Ried, F. C. Luft et al., Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries, J Pharmacol Exp Ther, vol.285, pp.293-298, 1998.

F. Cabell, D. S. Weiss, and J. M. Price, Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels, Am J Physiol, vol.267, pp.1455-1460, 1994.

G. E. Callera, E. Yeh, R. C. Tostes, L. C. Caperuto, C. R. Carvalho et al., Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2Kidney-1Clip hypertensive rats, Br J Pharmacol, vol.141, pp.1151-1158, 2004.

S. Cao, A. Anishkin, N. S. Zinkevich, Y. Nishijima, A. Korishettar et al., Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation, J Biol Chem, vol.293, pp.5307-5322, 2018.

G. O. Carrier, L. C. Fuchs, A. P. Winecoff, A. D. Giulumian, and R. E. White, Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels, Am J Physiol, vol.273, pp.76-84, 1997.

M. A. Carroll, A. B. Doumad, J. Li, M. K. Cheng, J. R. Falck et al., Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway, Am J Physiol Renal Physiol, vol.291, pp.155-161, 2006.

W. A. Catterall, Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response, Curr Mol Pharmacol, vol.8, pp.12-21, 2015.

P. S. Chadha, T. A. Jepps, G. Carr, J. B. Stott, H. L. Zhu et al., Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related Peptide-induced cerebral reactivity, Arterioscler Thromb Vasc Biol, vol.34, pp.887-893, 2014.

P. S. Chadha, F. Zunke, A. J. Davis, T. A. Jepps, J. T. Linders et al., Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries, Br J Pharmacol, vol.166, pp.1377-1387, 2012.

P. S. Chadha, F. Zunke, H. L. Zhu, A. J. Davis, T. A. Jepps et al., Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired beta-adrenoceptor-mediated relaxation of renal arteries in hypertension, Hypertension, vol.59, pp.877-884, 2012.

J. T. Chao, P. Gui, G. W. Zamponi, G. E. Davis, and M. J. Davis, Spatial association of the Cav1.2 calcium channel with alpha5beta1-integrin, Am J Physiol Cell Physiol, vol.300, pp.477-489, 2011.

I. S. Chen, Z. K. Dai, D. G. Welsh, I. J. Chen, and B. N. Wu, Protein kinases modulate store-operated channels in pulmonary artery smooth muscle cells, J Biomed Sci, vol.18, issue.2, 2011.

J. Chen, R. F. Crossland, M. M. Noorani, and S. P. Marrelli, Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation, Am J Physiol Heart Circ Physiol, vol.297, pp.417-424, 2009.

S. J. Chen, C. C. Wu, and M. H. Yen, Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin, Naunyn Schmiedebergs Arch Pharmacol, vol.359, pp.493-499, 1999.

H. C. Cheng, B. E. Kemp, R. B. Pearson, A. J. Smith, L. Misconi et al., A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase, J Biol Chem, vol.261, pp.989-992, 1986.

L. H. Clapp and A. M. Gurney, Modulation of calcium movements by nitroprusside in isolated vascular smooth muscle cells, Pflugers Arch, vol.418, pp.462-470, 1991.

N. Clement, M. Glorian, M. Raymondjean, M. Andreani, and I. Limon, PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8, J Cell Physiol, vol.208, pp.495-505, 2006.

W. A. Coetzee, Y. Amarillo, J. Chiu, A. Chow, D. Lau et al., Molecular diversity of K+ channels, Ann N Y Acad Sci, vol.868, pp.233-285, 1999.

R. A. Cohen, R. M. Weisbrod, M. Gericke, M. Yaghoubi, C. Bierl et al., Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx, Circ Res, vol.84, pp.210-219, 1999.

W. C. Cole and O. Clement-chomienne, ATP-sensitive K+ channels of vascular smooth muscle cells, J Cardiovasc Electrophysiol, vol.14, pp.94-103, 2003.

W. C. Cole and D. G. Welsh, Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure, Arch Biochem Biophys, vol.510, pp.160-173, 2011.

J. Colyer, Phosphorylation states of phospholamban, Ann N Y Acad Sci, vol.853, pp.79-91, 1998.

M. A. Conti and R. S. Adelstein, The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3':5' cAMP-dependent protein kinase, J Biol Chem, vol.256, pp.3178-3181, 1981.

T. L. Cornwell, K. B. Pryzwansky, T. A. Wyatt, and T. M. Lincoln, Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vas cular smooth muscle cells, Mol Pharmacol, vol.40, pp.923-931, 1991.

C. Corriu, M. Feletou, E. Canet, and P. M. Vanhoutte, Endothelium-derived factors and hyperpolarization of the carotid artery of the guinea -pig, Br J Pharmacol, vol.119, pp.959-964, 1996.

K. P. Cunningham, R. G. Holden, P. Escribano-subias, A. Cogolludo, E. L. Veale et al., Characterisation and regulation of wild type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension, J Physiol, 2018.

S. Dai, D. D. Hall, and J. W. Hell, Supramolecular assemblies and localized regulation of voltage-gated ion channels, Physiol Rev, vol.89, pp.411-452, 2009.

V. S. Dam, D. M. Boedtkjer, C. Aalkjaer, and V. Matchkov, The bestrophin-and TMEM16A-associated Ca(2+)-activated Cl(-) channels in vascular smooth muscles, Channels (Austin), vol.8, pp.361-369, 2014.

V. S. Dam, D. M. Boedtkjer, J. Nyvad, C. Aalkjaer, and V. Matchkov, TMEM16A knockdown abrogates two different Ca-activated Cl currents and contractility of smooth muscle in rat mesenteric small arteries, Pflugers Arch, 2013.

C. Dart and M. L. Leyland, Targeting of an A kinase-anchoring protein, AKAP79, to an inwardly rectifying potassium channel , Kir2.1, J Biol Chem, vol.276, pp.20499-20505, 2001.

C. Dart and N. B. Standen, Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery, J Physiol, vol.471, pp.767-786, 1993.

L. M. Davies, G. I. Purves, R. Barrett-jolley, and C. Dart, Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity, J Physiol, vol.588, pp.3255-3266, 2010.

P. De-lanerolle, M. Nishikawa, D. A. Yost, and R. S. Adelstein, Increased phosphorylation of myosin light chain kinase after an increase in cyclic AMP in intact smooth muscle, Science, vol.223, pp.1415-1417, 1984.

E. N. Dedkova and L. A. Blatter, Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells, J Physiol, vol.539, pp.77-91, 2002.

M. Desch, K. Sigl, B. Hieke, K. Salb, F. Kees et al., IRAG determines nitric oxide-and atrial natriuretic peptide-mediated smooth muscle relaxation, Cardiovasc Res, vol.86, pp.496-505, 2010.

S. N. Dhanakoti, Y. Gao, M. Q. Nguyen, and J. U. Raj, Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP, J Appl Physiol, vol.88, pp.1637-1642, 1985.

G. M. Dick, I. N. Bratz, L. Borbouse, G. A. Payne, U. D. Dincer et al., Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the c anine coronary circulation, Am J Physiol Heart Circ Physiol, vol.294, pp.2371-2381, 2008.

A. Dominguez-rodriguez, I. Diaz, M. Rodriguez-moyano, E. Calderon-sanchez, J. A. Rosado et al., Urotensin-II signaling mechanism in rat coronary artery: role of STIM1 and Orai1-dependent store operated calcium influx in vasoconstriction, Arterioscler Thromb Vasc Biol, vol.32, pp.1325-1332, 2012.

H. Dong, G. J. Waldron, W. C. Cole, and C. R. Triggle, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br J Pharmacol, vol.123, pp.821-832, 1998.

A. M. Dopico, A. N. Bukiya, and J. H. Jaggar, Calcium-and voltage-gated BK channels in vascular smooth muscle, Pflugers Arch, 2018.

S. Earley and J. E. Brayden, Transient receptor potential channels in the vasculature, Physiol Rev, vol.95, pp.645-690, 2015.

A. Eckly-michel, V. Martin, and C. Lugnier, Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation, Br J Pharmacol, vol.122, pp.158-164, 1997.

G. Edwards, M. Feletou, M. J. Gardener, C. D. Glen, G. R. Richards et al., Further investigations into the endothelium-dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery, Br J Pharmacol, vol.133, pp.1145-1153, 2001.

S. Eguchi, T. Kawano, . Yinhua, K. Tanaka, S. Yasui et al., Effects of prostaglandin E1 on vascular ATP-sensitive potassium channels, J Cardiovasc Pharmacol, vol.50, pp.686-691, 2007.

M. Ercu and E. Klussmann, Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System, J Cardiovasc Dev Dis, p.5, 2018.

M. Ferrer, J. Marin, A. Encabo, M. J. Alonso, and G. Balfagon, Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta, Gen Pharmacol, vol.33, pp.35-41, 1999.

J. A. Filosa, X. Yao, and G. Rath, TRPV4 and the regulation of vascular tone, J Cardiovasc Pharmacol, vol.61, pp.113-119, 2013.

M. N. Foster and W. A. Coetzee, KATP Channels in the Cardiovascular System, Physiol Rev, vol.96, pp.177-252, 2016.

S. H. Francis, J. L. Busch, J. D. Corbin, and D. Sibley, cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action, Pharmacol Rev, vol.62, pp.525-563, 2010.

K. Fujii, U. Onaka, K. Goto, I. Abe, and M. Fujishima, Impaired isoproterenol -induced hyperpolarization in isolated mesenteric arteries of aged rats, Hypertension, vol.34, pp.222-228, 1999.

K. Fujino, S. Nakaya, T. Wakatsuki, Y. Miyoshi, Y. Nakaya et al., Effects of nitroglycerin on ATP-induced Ca(++)-mobilization, Ca(++)-activated K channels and contraction of cultured smooth muscle cells of porcine coronary artery, J Pharmacol Exp Ther, vol.256, pp.371-377, 1991.

M. Fukao, H. S. Mason, F. C. Britton, J. L. Kenyon, B. Horowitz et al., Cyclic GMP -dependent protein kinase activates cloned BKCa channels expressed in mammalian c ells by direct phosphorylation at serine 1072, J Biol Chem, vol.274, pp.10927-10935, 1999.

S. Fukuda, T. Toriumi, H. Xu, H. Kinoshita, H. Nishimaki et al., Enhanced beta-receptor-mediated vasorelaxation in hypoxic porcine coronary artery, Am J Physiol, vol.277, pp.1447-1452, 1999.

T. Fukumitsu, H. Hayashi, H. Tokuno, and T. Tomita, Increase in calcium channel current by betaadrenoceptor agonists in single smooth muscle cells isolated from porcine coronary artery, Br J Pharmacol, vol.100, pp.593-599, 1990.

K. Furukawa and H. Nakamura, Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+)ATPase in vascular smooth muscle, J Biochem, vol.101, pp.287-290, 1987.

K. Furukawa, N. Ohshima, Y. Tawada-iwata, and M. Shigekawa, Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture, J Biol Chem, vol.266, pp.12337-12341, 1991.

K. Furukawa, Y. Tawada, and M. Shigekawa, Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells, J Biol Chem, vol.263, pp.8058-8065, 1988.

F. Fusi, F. Manetti, M. Durante, G. Sgaragli, and S. Saponara, The vasodilator papaverine stimulates Ltype Ca(2+) current in rat tail artery myocytes via a PKA-dependent mechanism, Vascul Pharmacol, vol.76, pp.53-61, 2016.

A. Galvez, G. Gimenez-gallego, J. P. Reuben, L. Roy-contancin, P. Feigenbaum et al., Puri fication and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus, J Biol Chem, vol.265, pp.11083-11090, 1990.

C. J. Garland, P. L. Yarova, F. Jimenez-altayo, and K. A. Dora, Vascular hyperpolarization to betaadrenoceptor agonists evokes spreading dilatation in rat isolated mesenteric arteries, Br J Pharmacol, vol.164, pp.913-921, 2011.

A. Geiselhoringer, M. Werner, K. Sigl, P. Smital, R. Worner et al., IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase, EMBO J, vol.23, pp.4222-4231, 2004.

M. J. George and E. F. Shibata, Regulation of calcium-activated potassium channels by S-nitrosothiol compounds and cyclic guanosine monophosphate in rabbit coronary artery myocytes, J Investig Med, vol.43, pp.451-458, 1995.

V. Gerzanich, A. Ivanov, S. Ivanova, J. B. Yang, H. Zhou et al., Alternative splicing of cGMP-dependent protein kinase I in angiotensin-hypertension: novel mechanism for nitrate tolerance in vascular smooth muscle, Circ Res, vol.93, pp.805-812, 2003.

J. M. Gidday, R. G. Maceren, A. R. Shah, J. A. Meier, and Y. Zhu, KATP channels mediate adenosineinduced hyperemia in retina, Invest Ophthalmol Vis Sci, vol.37, pp.2624-2633, 1996.

K. Goto, K. Fujii, I. Abe, and M. Fujishima, Sympathetic control of arterial membrane potential by ATPsensitive K(+)-channels, Hypertension, vol.35, pp.379-384, 2000.

B. D. Green, K. V. Hand, J. E. Dougan, B. M. Mcdonnell, R. S. Cassidy et al., GLP -1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP, Arch Biochem Biophys, vol.478, pp.136-142, 2008.

P. R. Grimm, D. L. Irsik, D. C. Settles, J. D. Holtzclaw, and S. C. Sansom, Hypertension of Kcnmb1 -/-is linked to deficient K secretion and aldosteronism, Proc Natl Acad Sci U S A, vol.106, pp.11800-11805, 2009.

M. Gueguen, Z. Keuylian, V. Mateo, N. Mougenot, A. M. Lompre et al., Implication of adenylyl cyclase 8 in pathological smooth muscle cell migration occurring in rat and human vascular remodelling, J Pathol, vol.221, pp.331-342, 2010.

A. Guia, X. Wan, M. Courtemanche, and N. Leblanc, Local Ca2+ entry through L-type Ca2+ channels activates Ca2+-dependent K+ channels in rabbit coronary myocytes, Circ Res, vol.84, pp.1032-1042, 1999.

J. M. Haick and K. L. Byron, Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels, Pharmacol Ther, vol.165, pp.14-25, 2016.

C. D. Hardin and J. Vallejo, Caveolins in vascular smooth muscle: form organizing function, Cardiovasc Res, vol.69, pp.808-815, 2006.

P. Hardy, D. Abran, X. Hou, I. Lahaie, K. G. Peri et al., A major role for prostacyclin in nitric oxide-induced ocular vasorelaxation in the piglet, Circ Res, vol.83, pp.721-729, 1998.

O. F. Harraz, A. El-rahman, R. R. Bigdely-shamloo, K. Wilson, S. M. Brett et al., , 2014.

. Ca, 2 channels and the induction of negative feedback in cerebral arteries, Circ Res, vol.115, pp.650-661

O. F. Harraz, S. E. Brett, and D. G. Welsh, Nitric Oxide Suppresses Vascular Voltage-Gated T-Type Ca2+ Channels Through cGMP/PKG Signaling, Am J Physiol Heart Circ Physiol, 2013.

O. F. Harraz, S. E. Brett, A. Zechariah, M. Romero, J. L. Puglisi et al., Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR -BKCa axis, Arterioscler Thromb Vasc Biol, vol.35, pp.1843-1851, 2015.

O. F. Harraz, F. Visser, S. E. Brett, D. Goldman, A. Zechariah et al., CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries, J Gen Physiol, vol.145, pp.405-418, 2015.

O. F. Harraz and D. G. Welsh, Protein kinase A regulation of T-type Ca2+ channels in rat cerebral arterial smooth muscle, J Cell Sci, vol.126, pp.2944-2954, 2013.

Y. Hayabuchi, C. Dart, and N. B. Standen, Evidence for involvement of A-kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A, J Physiol, vol.536, pp.421-427, 2001.

Y. Hayabuchi, N. W. Davies, and N. B. Standen, Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Ce, J Physiol, vol.530, pp.193-205, 2001.

S. Hayoz, J. L. Beny, and R. Bychkov, Intracellular cAMP: the "switch" that triggers on "spontaneous transient outward currents" generati on in freshly isolated myocytes from thoracic aorta, Am J Physiol Cell Physiol, vol.292, pp.1502-1509, 2007.

J. P. Headrick, K. J. Ashton, R. B. Rose'meyer, and J. N. Peart, Cardiovascular adenosine receptors: expression, actions and interactions, Pharmacol Ther, vol.140, pp.92-111, 2013.

C. L. Heaps and D. K. Bowles, Gender-specific K(+)-channel contribution to adenosine-induced relaxation in coronary arterioles, J Appl Physiol, vol.92, pp.550-558, 2002.

T. W. Hein and L. Kuo, cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels, Circ Res, vol.85, pp.634-642, 1999.

T. W. Hein, W. Xu, and L. Kuo, Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels, Invest Ophthalmol Vis Sci, vol.47, pp.693-699, 2006.

C. Heinze, A. Seniuk, M. V. Sokolov, A. K. Huebner, A. E. Klementowi-cz et al., Disruption of vascular Ca2+-activated chloride currents lowers blood pressure, J Clin Invest, vol.124, pp.675-686, 2014.

H. Hidaka, M. Inagaki, S. Kawamoto, and Y. Sasaki, Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, Biochemistry, vol.23, pp.5036-5041, 1984.

M. Hirata, K. P. Kohse, C. H. Chang, T. Ikebe, and F. Murad, Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells, J Biol Chem, vol.265, pp.1268-1273, 1990.

F. Hofmann, V. Flockerzi, S. Kahl, and J. W. Wegener, L-type CaV1.2 calcium channels: from in vitro findings to in vivo function, Physiol Rev, vol.94, pp.303-326, 2014.

M. E. Holman, C. B. Kasby, M. B. Suthers, and J. A. Wilson, Some properties of the smooth muscle of rabbit portal vein, J Physiol, vol.196, pp.111-132, 1968.

S. Holzmann, W. R. Kukovetz, C. Braida, and G. Poch, Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil, Eur J Pharmacol, vol.215, pp.1-7, 1992.

K. W. Hong, S. E. Yoo, S. S. Yu, J. Y. Lee, and B. Y. Rhim, Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles, Am J Physiol, vol.270, pp.317-323, 1996.

L. Howitt, I. Y. Kuo, A. Ellis, D. J. Chaston, H. S. Shin et al., Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles, Cardiovasc Res, vol.98, pp.449-457, 2013.

Y. Huang, F. L. Chan, C. W. Lau, S. Y. Tsang, Z. Y. Chen et al., Roles of cyclic AMP and Ca2+-activated K+ channels in endothelium-independent relaxation by urocortin in the rat coronary artery, Cardiovasc Res, vol.57, pp.824-833, 2003.

Y. Huang and K. H. Kwok, Effects of putative K+ channel blockers on beta-adrenoceptor-mediated vasorelaxation of rat mesenteric artery, J Cardiovasc Pharmacol, vol.29, pp.515-519, 1997.

E. S. Humphries, T. Kamishima, J. M. Quayle, and C. Dart, Calcium/calmodulin-dependent kinase 2 mediates Epac-induced spontaneous transient outward currents in rat vascular smooth muscle, J Physiol, 2017.

S. Idres, G. Perrin, V. Domergue, F. Lefebvre, S. Gomez et al., Contribution of BKCa channels to vascular tone regulation by PDE3 and PDE4 is lost in heart failure, Cardiovasc Res, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02463726

S. Idres, G. Perrin, V. Domergue, F. Lefebvre, S. Gomez et al., Contribution of BKCa channels to vascular tone regulation by PDE3 and PDE4 is lost in heart failure, Cardiovasc Res, vol.115, pp.130-144, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02463726

C. Indolfi, E. Di-lorenzo, A. Rapacciuolo, A. M. Stingone, E. Stabile et al., 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo, J Am Coll Cardiol, vol.36, pp.288-293, 2000.

T. Ishikawa, J. R. Hume, and K. D. Keef, Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells, Circ Res, vol.73, pp.1128-1137, 1993.

W. F. Jackson, Arteriolar tone is determined by activity of ATP-sensitive potassium channels, Am J Physiol, vol.265, pp.1797-1803, 1993.

W. F. Jackson, W. F. Jackson, A. Konig, T. Dambacher, and R. Busse, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am J Physiol, vol.264, pp.238-243, 1993.

J. H. Jaggar, V. A. Porter, W. J. Lederer, and M. T. Nelson, Calcium sparks in smooth muscle, Am J Physiol Cell Physiol, vol.278, pp.235-256, 2000.

T. A. Jepps, P. S. Chadha, A. J. Davis, M. I. Harhun, G. W. Cockerill et al., Downregulation of Kv7.4 channel activity in primary and secondary hypertension, Circulation, vol.124, pp.602-611, 2011.

F. Jiang, C. G. Li, and M. J. Rand, Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery, Br J Pharmacol, vol.123, pp.106-112, 1998.

H. Jiang, J. L. Colbran, S. H. Francis, and J. D. Corbin, Direct evidence for cross -activation of cGMPdependent protein kinase by cAMP in pig coronary arteries, J Biol Chem, vol.267, pp.1015-1019, 1992.

L. H. Jiang, D. J. Gawler, N. Hodson, C. J. Milligan, H. A. Pearson et al., Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase, J Biol Chem, vol.275, pp.6135-6143, 2000.

R. P. Johnson, A. F. El-yazbi, M. F. Hughes, D. C. Schriemer, E. J. Walsh et al., Identification and functional characterization of protein kinase A-catalyzed phosphorylation of potassium channel Kv1.2 at serine 449, J Biol Chem, vol.284, pp.16562-16574, 2009.

S. Joshi, V. Sedivy, D. Hodyc, J. Herget, and A. M. Gurney, KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle, J Pharmacol Exp Ther, vol.329, pp.368-376, 2009.

G. J. Kaczorowski and M. L. Garcia, Developing Molecular Pharmacology of BK Channels for Therapeutic Benefit, Int Rev Neurobiol, vol.128, pp.439-475, 2016.

H. Koyama, K. E. Bornfeldt, S. Fukumoto, and Y. Nishizawa, Molecular pathways of cyclic nucleotideinduced inhibition of arterial smooth muscle cell proliferation, J Cell Physiol, vol.186, pp.1-10, 2001.

C. Krawutschke, D. Koesling, and M. Russwurm, Cyclic GMP in Vascular Relaxation: Export Is of Similar Importance as Degradation, Arterioscler Thromb Vasc Biol, vol.35, pp.2011-2019, 2015.

M. Kubo, Y. Nakaya, S. Matsuoka, K. Saito, and Y. Kuroda, Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells, Circ Res, vol.74, pp.471-476, 1994.

M. Kuhn, Molecular Physiology of Membrane Guanylyl Cyclase Receptors, Physiol Rev, vol.96, pp.751-804, 2016.

H. Kume, I. P. Hall, R. J. Washabau, K. Takagi, and M. I. Kotlikoff, Beta -adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms, J Clin Invest, vol.93, pp.371-379, 1994.

L. Kuo and J. D. Chancellor, Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium, Am J Physiol, vol.269, pp.541-549, 1995.

H. Y. Kwan, Y. Huang, and X. Yao, Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism, J Biol Chem, vol.275, pp.6758-6763, 2000.

H. Y. Kwan, Y. Huang, and X. Yao, Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G, Proc Natl Acad Sci U S A, vol.101, pp.2625-2630, 2004.

H. Y. Kwan, Y. Huang, and X. Yao, Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G, J Cell Physiol, vol.207, pp.315-321, 2006.

H. Y. Kwan, B. Shen, X. Ma, Y. C. Kwok, Y. Huang et al., TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells, Circ Res, vol.104, pp.670-678, 2009.

B. D. Kyle and A. P. Braun, The regulation of BK channel activity by pre-and post-translational modifications, Front Physiol, vol.5, p.316, 2014.

B. D. Kyle, S. Hurst, R. D. Swayze, J. Sheng, and A. P. Braun, Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)-activated K(+) channel by cGMP-dependent protein kinase, FASEB J, vol.27, pp.2027-2038, 2013.

B. D. Kyle, R. C. Mishra, and A. P. Braun, The augmentation of BK channel activity by nitric oxide signaling in rat cerebral arteries involves co-localized regulatory elements, J Cereb Blood Flow Metab, pp.271678-17691291, 2017.

M. Lambert, V. Capuano, A. Boet, L. Tesson, T. Bertero et al., Characterization of Kcnk3 -Mutated Rat, a Novel Model of Pulmonary Hypertension, Circ Res, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346635

R. Latorre, K. Castillo, W. Carrasquel--ursulaez, R. V. Sepulveda, F. Gonzalez-nilo et al., Molecular Determinants of BK Channel Functional Diversity and Functioning, Physiol Rev, vol.97, pp.39-87, 2017.

S. Lee, Y. Yang, M. A. Tanner, M. Li, and M. A. Hill, Heterogeneity in Kv7 channel function in the cerebral and coronary circulation, Microcirculation, vol.22, pp.109-121, 2015.

M. D. Leo, J. P. Bannister, D. Narayanan, A. Nair, J. E. Grubbs et al., Dynamic regulation of beta1 subunit trafficking controls vascular contractility, Proc Natl Acad Sci, 2014.

F. Lezoualc'h, L. Fazal, M. Laudette, and C. Conte, Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease, Circ Res, vol.118, pp.881-897, 2016.

A. Li, R. H. Knutsen, H. Zhang, P. Osei--owusu, A. Moreno-dominguez et al., Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle, J Am Heart Assoc, vol.2, p.365, 2013.

H. Li, Q. Chai, D. D. Gutterman, and Y. Liu, Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells, Am J Physiol Heart Circ Physiol, vol.285, pp.1213-1219, 2003.

H. Li, H. Hong-da, Y. K. Son, S. H. Na, W. K. Jung et al., Cilostazol induces vasodilation through the activation of Ca(2+)-activated K(+) channels in aortic smooth muscle, Vascul Pharmacol, vol.70, pp.15-22, 2015.

P. L. Li, C. L. Chen, R. Bortell, and W. B. Campbell, 11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle, Circ Res, vol.85, pp.349-356, 1999.

P. L. Li, M. W. Jin, and W. B. Campbell, Effect of selective inhi bition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle, Hypertension, vol.31, pp.303-308, 1998.

P. L. Li, A. P. Zou, and W. B. Campbell, Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators, Hypertension, vol.29, pp.262-267, 1997.

C. F. Liang, A. L. Au, S. W. Leung, K. F. Ng, M. Feletou et al., , 2010.

, Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle, J Pharmacol Exp Ther, vol.334, pp.223-231

L. M. Lifshitz, J. D. Carmichael, F. A. Lai, V. Sorrentino, K. Bellve et al., Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca(2+) sparks in airway myocytes, J Gen Physiol, vol.138, pp.195-209, 2011.

B. Lima, M. T. Forrester, D. T. Hess, and J. S. Stamler, S-nitrosylation in cardiovascular signaling, Circ Res, vol.106, pp.633-646, 2010.

Y. F. Lin, Y. N. Jan, and L. Y. Jan, Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells, EMBO J, vol.19, pp.942-955, 2000.

J. Lindman, M. M. Khammy, P. R. Lundegaard, C. Aalkjaer, and T. A. Jepps, Microtubule Regulation of Kv7 Channels Orchestrates cAMP-Mediated Vasorelaxations in Rat Arterial Smooth Muscle, 2017.

J. Liou, M. L. Kim, W. D. Heo, J. T. Jones, J. W. Myers et al., STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx, Curr Biol, vol.15, pp.1235-1241, 2005.

G. Liu, A. Papa, A. N. Katchman, S. I. Zakharov, D. Roybal et al., Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics, Nature, 2020.

G. Liu, J. Shi, L. Yang, L. Cao, S. M. Park et al., Assembly of a Ca2+-dependent BK channel signaling complex by binding to beta2 adrenergic receptor, EMBO J, vol.23, pp.2196-2205, 2004.

M. Liu, W. A. Large, and A. P. Albert, Stimulation of beta -adrenoceptors inhibits store-operated channel currents via a cAMP-dependent protein kinase mechanism in rabbit portal vein myocytes, J Physiol, vol.562, pp.395-406, 2005.

T. Liu, H. J. Schroeder, M. Zhang, S. M. Wilson, M. H. Terry et al., S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and Ltype calcium channel -dependent mechanism, Nitric Oxide, vol.58, pp.20-27, 2016.

E. E. Lloyd, S. P. Marrelli, R. M. Bryan, and . Jr, cGMP does not activate two-pore domain K+ channels in cerebrovascular smooth muscle, Am J Physiol Heart Circ Physiol, vol.296, pp.1774-1780, 2009.

A. Lochner and J. A. Moolman, The many faces of H89: a review, Cardiovasc Drug Rev, vol.24, pp.261-274, 2006.

G. Loirand and P. Pacaud, Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension, Small GTPases, vol.5, pp.1-10, 2014.

C. Lugnier, P. Schoeffter, A. Le-bec, E. Strouthou, and J. C. Stoclet, Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta, Biochem Pharmacol, vol.35, pp.1743-1751, 1986.

D. L. Luo, M. Nakazawa, T. Ishibashi, K. Kato, and S. Imai, Putative, selective inhibitors of sarcoplasmic reticulum Ca+(+)-pump ATPase inhibit relaxation by nitrogl ycerin and atrial natriuretic factor of the rabbit aorta contracted by phenylephrine, J Pharmacol Exp Ther, vol.265, pp.1187-1192, 1993.

K. D. Luykenaar and D. G. Welsh, Activators of the PKA and PKG pathways attenuate RhoA-mediated suppression of the KDR current in cerebral arteries, Am J Physiol Heart Circ Physiol, vol.292, pp.2654-2663, 2007.

B. K. Mani, C. Robakowski, L. I. Brueggemann, L. L. Cribbs, A. Tripathi et al., Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents, Mol Pharmacol, vol.89, pp.323-334, 2016.

B. Manoury, A. Tamuleviciute, and P. Tammaro, TMEM16A/anoctamin 1 protein mediates calciumactivated chloride currents in pulmonary arterial smooth muscle cells, J Physiol, vol.588, pp.2305-2314, 2010.

T. N. Marks, G. R. Dubyak, and S. W. Jones, Calcium currents in the A7r5 smooth muscle-derived cell line, Pflugers Arch, vol.417, pp.433-439, 1990.

S. O. Marx, J. Kurokawa, S. Reiken, H. Motoike, J. D'armiento et al., Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1 -KCNE1 potassium channel, Science, vol.295, pp.496-499, 2002.

V. V. Matchkov, C. Aalkjaer, and H. Nilsson, A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries, J Gen Physiol, vol.123, pp.121-134, 2004.

V. V. Matchkov, P. Larsen, E. V. Bouzinova, A. Rojek, D. M. Boedtkjer et al., Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells, Circ Res, vol.103, pp.864-872, 2008.

T. Matsumoto, T. Szasz, R. C. Tostes, and R. C. Webb, Impaired beta-adrenoceptor-induced relaxation in small mesenteric arteries from DOCA-salt hypertensive rats is due to reduced K(Ca) channel activity, Pharmacol Res, 2012.

M. Matsushita, Y. Tanaka, and K. Koike, Studies on the mechanisms underlying beta-adrenoceptormediated relaxation of rat abdominal aorta, J Smooth Muscle Res, vol.42, pp.217-225, 2006.

D. H. Maurice, H. Ke, F. Ahmad, Y. Wang, J. Chung et al., Advances in targeting cyclic nucleotide phosphodiesterases, Nat Rev Drug Discov, vol.13, pp.290-314, 2014.

K. D. Meisheri and C. Van-breemen, Effects of beta -adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP, J Physiol, vol.331, pp.429-441, 1982.

J. Mercado, R. Baylie, M. F. Navedo, C. Yuan, J. D. Scott et al., Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle, J Gen Physiol, vol.143, pp.559-575, 2014.

L. A. Merkel, R. W. Lappe, L. M. Rivera, B. F. Cox, and M. H. Perrone, Demonstration of vasorelaxant activity with an A1-selective adenosine agonist in porcine coronary artery: involvement of potassium channels, J Pharmacol Exp Ther, vol.260, pp.437-443, 1992.

L. A. Merkel, L. M. Rivera, D. J. Colussi, M. H. Perrone, G. J. Smits et al., In vitro and in vivo characterization of an A1-selective adenosine agonist, RG14202, J Pharmacol Exp Ther, vol.265, pp.699-706, 1993.

T. R. Mesquita, G. Auguste, D. Falcon, G. Ruiz-hurtado, R. Salazar-enciso et al., Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor, Circ Res, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01865832

T. Miki, M. Suzuki, T. Shibasaki, H. Uemura, T. Sato et al., Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6, Nat Med, vol.1, pp.466-472, 2002.

C. Miller, E. Moczydlowski, R. Latorre, and M. Phillips, Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature, vol.313, pp.316-318, 1985.

M. R. Miller and I. L. Megson, Recent developments in nitric oxide donor drugs, Br J Pharmacol, vol.151, pp.305-321, 2007.

K. Minami, K. Fukuzawa, Y. Nakaya, X. R. Zeng, and I. Inoue, Mechanism of activation of the Ca(2+) -activated K+ channel by cyclic AMP in cultured porcine coronary artery smooth muscle cells, Life Sci, vol.53, pp.1129-1135, 1993.

D. K. Mistry and C. J. Garland, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric ar tery, Br J Pharmacol, vol.124, pp.1131-1140, 1998.

H. Miyoshi and Y. Nakaya, Activation of ATP-sensitive K+ channels by cyclic AMP-dependent protein kinase in cultured smooth muscle cells of porcine coronary artery, Biochem Biophys Res Commun, vol.193, pp.240-247, 1993.

H. Miyoshi and Y. Nakaya, Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase, Basic Res Cardiol, vol.90, pp.332-336, 1995.

H. Miyoshi, Y. Nakaya, and H. Moritoki, Nonendothelial -derived nitric oxide activates the ATP-sensitive K+ channel of vascular smooth muscle cells, FEBS Lett, vol.345, pp.47-49, 1994.

G. Mondejar-parreno, J. Moral-sanz, B. Barreira, A. De-la-cruz, T. Gonzalez et al., Activation of Kv 7 channels as a novel mechanism for NO/cGMP-induced pulmonary vasodilation, Br J Pharmacol, vol.176, pp.2131-2145, 2019.

C. L. Moore, S. J. Mcclenahan, H. M. Hanvey, D. S. Jang, P. L. Nelson et al., Beta1-adrenergic receptor-mediated dilation of rat cerebral artery requires Shaker-type KV1 channels on PSD95 scaffold, J Cereb Blood Flow Metab, vol.35, pp.1537-1546, 2015.

C. L. Moore, P. L. Nelson, N. K. Parelkar, N. J. Rusch, and S. W. Rhee, Protein kinase A-phosphorylated KV1 channels in PSD95 signaling complex contribute to the resting membrane potential and diameter of cerebral arteries, Circ Res, vol.114, pp.1258-1267, 2014.

S. Moosmang, V. Schulla, A. Welling, R. Feil, S. Feil et al., Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation, EMBO J, vol.22, pp.6027-6034, 2003.

D. Morales-cano, L. Moreno, B. Barreira, R. Pandolfi, V. Chamorro et al., Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia, Cardiovasc Res, vol.106, pp.98-108, 2015.

M. Morgado, E. Cairrao, A. J. Santos--silva, and I. Verde, Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle, Cell Mol Life Sci, vol.69, pp.247-266, 2012.

A. Mughal, C. Sun, and S. T. Rourke, Activation of Large Conductance, Calcium-Activated Potassium Channels by Nitric Oxide Mediates Apelin-Induced Relaxation of Isolated Rat Coronary Arteries, J Pharmacol Exp Ther, vol.366, pp.265-273, 2018.

C. Mundina-weilenmann, L. Vittone, G. Rinaldi, M. Said, G. C. De-cingolani et al., Endoplasmic reticulum contribution to the relaxant effect of cGMP-and cAMP-elevating agents in feline aorta, Am J Physiol Heart Circ Physiol, vol.278, pp.1856-1865, 2000.

M. Murakami, H. Yamamura, T. Suzuki, M. G. Kang, S. Ohya et al., Modified cardiovascular L-type channels in mice lacking the voltage-dependent Ca2+ channel beta3 subunit, J Biol Chem, vol.278, pp.43261-43267, 2003.

K. Murphy, V. Gerzanich, H. Zhou, S. Ivanova, Y. Dong et al., Adenosine-A2a receptor down-regulates cerebral smooth muscle L-type Ca2+ channel activity via protein tyrosine phosphatase, not cAMP-dependent protein kinase, Mol Pharmacol, vol.64, pp.640-649, 2003.

M. E. Murphy and J. E. Brayden, Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP -sensitive potassium channels, J Physiol, pp.47-58, 1995.

T. V. Murphy, A. Kanagarajah, S. Toemoe, P. P. Bertrand, T. H. Grayson et al., TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats, Vascul Pharmacol, vol.83, pp.66-77, 2016.

A. K. Mustafa, G. Sikka, S. K. Gazi, J. Steppan, S. M. Jung et al., Hydrogen sulfide as endotheliumderived hyperpolarizing factor sulfhydrates potassium channels, Circ Res, vol.109, pp.1259-1268, 2011.

S. J. Mustafa, R. R. Morrison, B. Teng, and A. Pelleg, Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology, Handb Exp Pharmacol, pp.161-188, 2009.

V. N. Mutafova-yambolieva and K. D. Keef, Adenosine-induced hyperpolarization in guinea pig coronary artery involves A2b receptors and KATP channels, Am J Physiol, vol.273, pp.2687-2695, 1997.

K. Nakamura, F. Ikomi, and T. Ohhashi, Cilostazol, an inhibitor of type 3 phosphodiesterase, produces endothelium-independent vasodilation in pressurized rabbit cerebral penetrating arterioles, J Vasc Res, vol.43, pp.86-94, 2006.

K. Nakamura, Y. Koga, H. Sakai, K. Homma, and M. Ikebe, cGMP-dependent relaxation of smooth muscle is coupled with the change in the phosphorylation of myosin phosphatase, Circ Res, vol.101, pp.712-722, 2007.

M. Nakashima and P. M. Vanhoutte, Isoproterenol causes hyperpolarization through opening of ATPsensitive potassium channels in vascular smooth muscle of the canine saphenous vein, J Pharmacol Exp Ther, vol.272, pp.379-384, 1995.

N. Nakhostine and D. Lamontagne, Adenosine contributes to hypoxia -induced vasodilation through ATPsensitive K+ channel activation, Am J Physiol, vol.265, pp.1289-1293, 1993.

M. Nara, P. D. Dhulipala, G. J. Ji, U. R. Kamasani, Y. X. Wang et al., Guanylyl cyclase stimulatory coupling to K(Ca) channels, Am J Physiol Cell Physiol, vol.279, pp.1938-1945, 2000.

M. Nara, P. D. Dhulipala, Y. X. Wang, and M. I. Kotlikoff, Reconstitution of beta -adrenergic modulation of large conductance, calcium-activated potassium (maxi -K) channels in Xenopus oocytes. Identification of the camp-dependent protein kinase phosphorylation site, J Biol Chem, vol.273, pp.14920-14924, 1998.

A. Natarajan, G. Han, S. Y. Chen, P. Yu, R. White et al., The d5 dopamine receptor mediates large-conductance, calcium-and voltage-activated potassium channel activation in human coronary artery smooth muscle cells, J Pharmacol Exp Ther, vol.332, pp.640-649, 2010.

M. F. Navarro-gonzalez, T. H. Grayson, K. R. Meaney, L. L. Cribbs, and C. E. Hill, Non-L-type voltagedependent calcium channels control vascular tone of the rat basilar artery, Clin Exp Pharmacol Physiol, vol.36, pp.55-66, 2009.

M. F. Navedo and L. F. Santana, CaV1.2 sparklets in heart and vascular smooth muscle, J Mol Cell Cardiol, vol.58, pp.67-76, 2013.

M. F. Navedo, Y. Takeda, M. Nieves-cintron, J. D. Molkentin, and L. F. Santana, Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells, Am J Physiol Cell Physiol, vol.298, pp.211-220, 2010.

, Journal Pre

C. P. Nelson, R. D. Rainbow, J. L. Brignell, M. D. Perry, J. M. Willets et al., Principal role of adenylyl cyclase 6 in K(+) channel regulation and vasodilator signalling in vascular smooth muscle cells, Cardiovasc Res, vol.91, pp.694-702, 2011.

M. T. Nelson, H. Cheng, M. Rubart, L. F. Santana, A. D. Bonev et al., Relaxation of arterial smooth muscle by calcium sparks, Science, vol.270, pp.633-637, 1995.

M. T. Nelson, Y. Huang, J. E. Brayden, J. Hescheler, and N. B. Standen, Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels, Nature, vol.344, pp.770-773, 1990.

M. T. Nelson and J. M. Quayle, Physiological roles and properties of potassium channels in arterial smooth muscle, Am J Physiol, vol.268, pp.799-822, 1995.

L. C. Ng and A. M. Gurney, Store-operated channels mediate Ca(2+) influx and contraction in rat pulmonary artery, Circ Res, vol.89, pp.923-929, 2001.

K. Nishioka, M. Nishida, M. Ariyoshi, Z. Jian, S. Saiki et al., Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel, Arterioscler Thromb Vasc Biol, vol.31, pp.2278-2286, 2011.

C. E. Norton and S. S. Segal, Calcitonin gene-related peptide hyperpolarizes mouse pulmonary artery endothelial tubes through KATP channel activation, Am J Physiol Lung Cell Mol Physiol, vol.315, pp.212-226, 2018.

Z. Nourian, M. Li, M. D. Leo, J. H. Jaggar, A. P. Braun et al., Large conductance Ca2+-activated K+ channel (BKCa) alpha-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature, PLoS One, vol.9, p.98863, 2014.

N. C. Nyborg, U. Baandrup, E. O. Mikkelsen, and M. J. Mulvany, Active, passive and myogenic characteristics of isolated rat intramural coronary resistance arteries, Pflugers Arch, vol.410, pp.664-670, 1987.

M. A. Nystoriak, M. Nieves-cintron, T. Patriarchi, O. R. Buonarati, M. P. Prada et al., Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes, Sci Signal, p.10, 2017.

A. Olschewski, Y. Li, B. Tang, J. Hanze, B. Eul et al., Impact of TASK -1 in human pulmonary artery smooth muscl e cells, Circ Res, vol.98, pp.1072-1080, 2006.

A. Olschewski, E. L. Veale, B. M. Nagy, C. Nagaraj, G. Kwapiszewska et al., TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications, Eur Respir J, p.50, 2017.

A. Olschewski and E. K. Weir, Redox regulation of ion channels in the pulmonary circulation, Antioxid Redox Signal, vol.22, pp.465-485, 2015.

R. Omar, F. E. Bottrill, C. R. Hiley, and R. White, Interaction of cyclic AMP modulating agents with levcromakalim in the relaxation of rat isolated mesenteric artery, Eur J Pharmacol, vol.401, pp.85-96, 2000.

H. Onoue and Z. S. Katusic, Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors, Stroke, vol.28, pp.1270-1261, 1997.

H. Onoue and Z. S. Katusic, The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide, Brain Res, vol.785, pp.107-113, 1998.

N. N. Orie, C. H. Fry, and L. H. Clapp, Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism, Cardiovasc Res, vol.69, pp.107-115, 2006.

N. N. Orie, A. M. Thomas, B. A. Perrino, A. Tinker, and L. H. Clapp, Ca2+/calcineurin regulation of cloned vascular K ATP channels: crosstalk with the protein kinase A pathway, Br J Pharmacol, vol.157, pp.554-564, 2009.

P. Osei-owusu, X. Sun, R. M. Drenan, T. H. Steinberg, and K. J. Blumer, Regulation of RGS2 and second messenger signaling in vascular smooth muscle cells by cGMP-dependent protein kinase, J Biol Chem, vol.282, pp.31656-31665, 2007.

R. S. Ostrom, X. Liu, B. P. Head, C. Gregorian, T. M. Seasholtz et al., Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains, Mol Pharmacol, vol.62, pp.983-992, 2002.

B. S. Pallotta, K. L. Magleby, and J. N. Barrett, Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture, Nature, vol.293, pp.471-474, 1981.

K. M. Park, M. Trucillo, N. Serban, R. A. Cohen, and V. M. Bolotina, Role of iPLA2 and store-operated channels in agonist-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries, Am J Physiol Heart Circ Physiol, vol.294, pp.1183-1187, 2008.

W. S. Park, J. Han, and Y. E. Earm, Physiological role of inward rectifier K(+) channels in vascular smooth muscle cells, Pflugers Arch, vol.457, pp.137-147, 2008.

R. Paterno, F. M. Faraci, and D. D. Heistad, Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat, Stroke, vol.27, pp.1607-1608, 1996.

W. Peng, J. R. Hoidal, and I. S. Farrukh, Regulation of Ca(2+)-activated K+ channels in pulmonary vascular smooth muscle cells: role of nitric oxide, In J Appl Physiol, vol.81, pp.1264-1272, 1985.

A. Pfeifer, P. Klatt, S. Massberg, L. Ny, M. Sausbier et al., Defective smooth muscle regulation in cGMP kinase I -deficient mice, EMBO J, vol.17, pp.3045-3051, 1998.

A. S. Piper and W. A. Large, Single cGMP-activated Ca(+)-dependent Cl(-) channels in rat mesenteric artery smooth muscle cells, J Physiol, vol.555, pp.397-408, 2004.

F. Plane, A. Hurrell, J. Y. Jeremy, and C. J. Garland, Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery, Br J Pharmacol, vol.119, pp.1557-1562, 1996.

F. Plane, K. E. Wiley, J. Y. Jeremy, R. A. Cohen, and C. J. Garland, Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxi de and nitric oxide donors in the rabbit isolated carotid artery, Br J Pharmacol, vol.123, pp.1351-1358, 1998.

S. Pluger, J. Faulhaber, M. Furstenau, M. Lohn, R. Waldschutz et al., Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure, Circ Res, vol.87, pp.53-60, 2000.

J. B. Polson and S. J. Strada, Cyclic nucleotide phosphodiesterases and vascular smooth muscle, Annu Rev Pharmacol Toxicol, vol.36, pp.403-427, 1996.

L. M. Popescu, C. Panoiu, M. Hinescu, and O. Nutu, The mechanism of cGMP -induced relaxation in vascular smooth muscle, Eur J Pharmacol, vol.107, pp.393-394, 1985.

H. Poppe, S. D. Rybalkin, H. Rehmann, T. R. Hinds, X. B. Tang et al., Cyclic nucleotide analogs as probes of signaling pathways, Nat Methods, vol.5, pp.277-278, 2008.

V. A. Porter, A. D. Bonev, H. J. Knot, T. J. Heppner, A. S. Stevenson et al., Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides, Am J Physiol, vol.274, pp.1346-1355, 1998.

M. Potier, J. C. Gonzalez, R. K. Motiani, I. F. Abdullaev, J. M. Bisaillon et al., Evidence for STIM1-and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration, FASEB J, vol.23, pp.2425-2437, 2009.

D. R. Poyner, P. M. Sexton, I. Marshall, D. M. Smith, R. Quirion et al., International Union of Pharmacology. XXXII. The mammalian cal citonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors, Pharmacol Rev, vol.54, pp.233-246, 2002.

M. Prakriya, S. Feske, Y. Gwack, S. Srikanth, A. Rao et al., Orai1 is an essential pore subunit of the CRAC channel, Nature, vol.443, pp.230-233, 2006.

J. M. Price, J. F. Cabell, and A. Hellermann, Inhibition of cAMP mediated relaxation in rat coronary vessels by block of Ca++ activated K+ channels, Life Sci, vol.58, pp.2225-2232, 1996.

J. M. Price and A. Hellermann, Inhibition of cGMP mediated relaxation in small rat coronary arteries by block of CA++ activated K+ channels, Life Sci, vol.61, pp.1185-1192, 1997.

D. Prieto, S. Benedito, and N. C. Nyborg, Heterogeneous involvement of endothelium in calcitonin generelated peptide-induced relaxation in coronary arteries from rat, Br J Pharmacol, vol.103, pp.1764-1768, 1991.

D. Prieto, L. Rivera, S. Benedito, P. Recio, N. Villalba et al., Ca2+-activated K+ (KCa) channels are involved in the relaxations elicited by sildenafil in penile resistance arteries, Eur J Pharmacol, vol.531, pp.232-237, 2006.

S. Puetz, L. T. Lubomirov, and G. Pfitzer, Regulation of smooth muscle contraction by small GTPases, Physiology (Bethesda), vol.24, pp.342-356, 2009.

G. I. Purves, T. Kamishima, L. M. Davies, J. M. Quayle, and C. Dart, Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATPsensitive potassium channels, J Physiol, vol.587, pp.3639-3650, 2009.

J. M. Quayle, A. D. Bonev, J. E. Brayden, and M. T. Nelson, Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J Physiol, vol.475, pp.9-13, 1994.

J. M. Quayle, M. T. Nelson, and N. B. Standen, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol Rev, vol.77, pp.1165-1232, 1997.

J. F. Quignard, J. M. Frapier, M. C. Harricane, B. Albat, J. Nargeot et al., Voltage-gated calcium channel currents in human coronary myocytes. Regulation by cyclic GMP and nitric oxide, J Clin Invest, vol.99, pp.185-193, 1997.

K. V. Quinn, J. P. Giblin, and A. Tinker, Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel, Circ Res, vol.94, pp.1359-1366, 2004.

H. Raina, J. Zacharia, M. Li, and W. G. Wier, Activation by Ca2+/calmodulin of an exogenous myosin light chain kinase in mouse arteries, J Physiol, vol.587, pp.2599-2612, 2009.

M. D. Randall and A. I. Mcculloch, The involvement of ATP-sensitive potassium channels in betaadrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed, Br J Pharmacol, vol.115, pp.607-612, 1995.

R. M. Rapoport, Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta, Circ Res, vol.58, pp.407-410, 1986.

S. S. Rashatwar, T. L. Cornwell, and T. M. Lincoln, Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase, Proc Natl Acad Sci U S A, vol.84, pp.5685-5689, 1987.

B. Razani, S. E. Woodman, and M. P. Lisanti, Caveolae: from cell biology to animal physiology, Pharmacol Rev, vol.54, pp.431-467, 2002.

A. D. Rieg, R. Rossaint, E. Verjans, N. A. Maihofer, S. Uhlig et al., Levosimendan Relaxes Pulmonary Arteries and Veins in Precision-Cut Lung Slices -The Role of K-Channels, cAMP and cGMP, PLoS One, vol.8, p.66195, 2013.

O. L. Roberts, T. Kamishima, R. Barrett-jolley, J. M. Quayle, and C. Dart, Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery, J Physiol, 2013.

B. E. Robertson, R. Schubert, J. Hescheler, and M. T. Nelson, cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells, Am J Physiol, vol.265, pp.299-303, 1993.

G. R. Ross and C. Yallampalli, Endothelium-independent relaxation by adrenomedullin in pregnant rat mesenteric artery: role of cAMP-dependent protein kinase A and calcium-activated potassium channels, J Pharmacol Exp Ther, vol.317, pp.1269-1275, 2006.

V. Ruiz-velasco, J. Zhong, J. R. Hume, and K. D. Keef, Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein, Circ Res, vol.82, pp.557-565, 1998.

J. Sadoshima, N. Akaike, H. Kanaide, and M. Nakamura, Cyclic AMP modulates Ca -activated K channel in cultured smooth muscle cells of rat aortas, Am J Physiol, vol.255, pp.754-759, 1988.

M. Saito, C. Nelson, L. Salkoff, and C. J. Lingle, A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells, J Biol Chem, vol.272, pp.11710-11717, 1997.

L. J. Sampson, Y. Hayabuchi, N. B. Standen, and C. Dart, Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels, Circ Res, vol.95, pp.1012-1018, 2004.

L. J. Sampson, F. Plane, and C. J. Garland, Involvement of cyclic GMP and potassium channels in relaxation evoked by the nitric oxide donor, diethylamine NONOate, in the rat smal l isolated mesenteric artery, Naunyn Schmiedebergs Arch Pharmacol, vol.364, pp.220-225, 2001.

M. Sancho, N. C. Samson, B. O. Hald, A. M. Hashad, S. P. Marrelli et al., KIR channels tune electrical communication in cerebral arteries, J Cereb Blood Flow Metab, vol.37, pp.2171-2184, 2017.

C. B. Saqueton, R. B. Miller, V. A. Porter, C. E. Milla, and D. N. Cornfield, NO causes perinatal pulmonary vasodilation through K+-channel activation and intracellular Ca2+ release, Am J Physiol, vol.276, pp.925-932, 1999.

Y. Sassi, L. Lipskaia, G. Vandecasteele, V. O. Nikolaev, S. N. Hatem et al., Multidrug resistanceassociated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation, J Clin Invest, vol.118, pp.2747-2757, 2008.

N. Satake, S. Fujimoto, and S. Shibata, The potentiation of nitroglycerin -induced relaxation by PKG inhibition in rat aortic rings, Gen Pharmacol, vol.27, pp.701-705, 1996.

N. Satake, M. Shibata, and S. Shibata, The inhibitory effects of iberiotoxin and 4 -aminopyridine on the relaxation induced by beta 1-and beta 2-adrenoceptor activation in rat aortic rings, Br J Pharmacol, vol.119, pp.505-510, 1996.

M. Sausbier, C. Arntz, I. Bucurenciu, H. Zhao, X. B. Zhou et al., Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel -deficient mice, Circulation, vol.112, pp.60-68, 2005.

M. Sausbier, R. Schubert, V. Voigt, C. Hirneiss, A. Pfeifer et al., Mechanisms of NO/cGMP-dependent vasorelaxation, Circ Res, vol.87, pp.825-830, 2000.

V. Sauzeau, H. Le-jeune, C. Cario-toumaniantz, A. Smolenski, S. M. Lohmann et al., Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle, J Biol Chem, vol.275, pp.21722-21729, 2000.

J. Schlossmann, A. Ammendola, K. Ashman, X. Zong, A. Huber et al., Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta, Nature, vol.404, pp.197-201, 2000.

J. Schmid, B. Muller, D. Heppeler, D. Gaynullina, M. Kassmann et al., The Unexpected Role of Calcium-Activated Potassium Channels: Limitation of NO-Induced Arterial Relaxation, J Am Heart Assoc, p.7, 2018.

P. Schoeffter, C. Lugnier, F. Demesy-waeldele, and J. C. Stoclet, Role of cyclic AMP-and cyclic GMPphosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors, Biochem Pharmacol, vol.36, pp.3965-3972, 1987.

A. Schramm, P. Mueller-thuemen, T. Littmann, M. Harloff, T. Ozawa et al., Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies, Int J Mol Sci, vol.19, 2018.

R. Schubert, U. Krien, I. Wulfsen, D. Schiemann, G. Lehmann et al., Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels, Hypertension, vol.43, pp.891-896, 2004.

R. Schubert, G. Lehmann, V. N. Serebryakov, H. Mewes, and H. H. Hopp, cAMP-dependent protein kinase is in an active state in rat small arteries possessing a myogenic tone, Am J Physiol, vol.277, pp.1145-1155, 1999.

R. Schubert, V. N. Serebryakov, H. Engel, and H. H. Hopp, Iloprost activates KCa c hannels of vascular smooth muscle cells: role of cAMP-dependent protein kinase, Am J Physiol, vol.271, pp.1203-1211, 1996.

R. Schubert, V. N. Serebryakov, H. Mewes, and H. H. Hopp, Iloprost dilates rat small arteries: role of K(ATP)-and K(Ca)-channel activation by cAMP-dependent protein kinase, Am J Physiol, vol.272, pp.1147-1156, 1997.

F. S. Scornik, J. Codina, L. Birnbaumer, and L. Toro, Modulation of coronary smooth muscle KCa channels by Gs alpha independent of phosphorylation by protein kinase A, Am J Physiol, vol.265, pp.1460-1465, 1993.

J. L. Sheehe, A. D. Bonev, A. M. Schmoker, B. A. Ballif, M. T. Nelson et al., Oxidation of cysteine 117 stimulates constitutive activation of the type Ialpha cGMP -dependent protein kinase, J Biol Chem, 2018.

J. Shi, F. Miralles, L. Birnbaumer, W. A. Large, and A. P. Albert, Store-operated interactions between plasmalemmal STIM1 and TRPC1 proteins stimulate PLCbeta1 to induce TRPC1 channel activation in vascular smooth muscle cells, J Physiol, vol.595, pp.1039-1058, 2017.

J. Shi, F. Miralles, J. P. Kinet, L. Birnbaumer, W. A. Large et al., Evidence that Orai1 does not contribute to store-operated TRPC1 channels in vascular smooth muscle cells, Channels (Austin), vol.11, pp.329-339, 2017.

Q. Y. Shi and R. H. Cox, GTP requirement for isoproterenol activation of calcium channels in vascular myocytes, Am J Physiol, vol.269, pp.195-202, 1995.

Y. Shi, X. Chen, Z. Wu, W. Shi, Y. Yang et al., cAMP -dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel, J Biol Chem, vol.283, pp.7523-7530, 2008.

Y. Shi, Z. Wu, N. Cui, W. Shi, Y. Yang et al., PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta -adrenergic receptors, Am J Physiol Regul Integr Comp Physiol, vol.293, pp.1205-1214, 2007.

H. K. Simmerman and L. R. Jones, Phospholamban: protein structure, mechanism of action, and role i n cardiac function, Physiol Rev, vol.78, pp.921-947, 1998.

A. Singh, M. E. Hildebrand, E. Garcia, and T. P. Snutch, The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels, Br J Pharmacol, vol.160, pp.1464-1475, 2010.

T. Smani, A. Dominguez-rodriguez, A. Hmadcha, E. Calderon-sanchez, A. Horrillo-ledesma et al., Role of Ca2+-independent phospholipase A2 and store-operated pathway in urocortin-induced vasodilatation of rat coronary artery, Circ Res, vol.101, pp.1194-1203, 2007.

T. Smani, S. I. Zakharov, P. Csutora, E. Leno, E. S. Trepakova et al., A novel mechanism for the store-operated calcium influx pathway, Nat Cell Biol, vol.6, pp.113-120, 2004.

A. Smolenski, Novel roles of cAMP/cGMP-dependent signaling in platelets, J Thromb Haemost, vol.10, pp.167-176, 2012.

A. V. Somlyo, G. Haeusler, and A. P. Somlyo, Cyclic adenosine monophosphate: potassium-dependent action on vascular smooth muscle membrane potential, Science, vol.169, pp.490-491, 1970.

Y. K. Son, W. S. Park, J. H. Ko, J. Han, N. Kim et al., Protein kinase A-dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells, Biochem Biophys Res Commun, vol.337, pp.1145-1152, 2005.

Y. Song and J. M. Simard, beta-Adrenoceptor stimulation activates large-conductance Ca2+-activated K+ channels in smooth muscle cells from basilar artery of guinea pig, Pflugers Arch, vol.430, pp.984-993, 1995.

S. K. Sonkusare, A. D. Bonev, J. Ledoux, W. Liedtke, M. I. Kotlikoff et al., Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function, Science, vol.336, pp.597-601, 2012.

K. Spiranec, W. Chen, F. Werner, V. O. Nikolaev, T. Naruke et al., Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation, 2018.

N. B. Standen, J. M. Quayle, N. W. Davies, J. E. Brayden, Y. Huang et al., Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science, vol.245, pp.177-180, 1989.

J. B. Stott, V. Barrese, and I. A. Greenwood, Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries, Arterioscler Thromb Vasc Biol, vol.36, pp.2404-2411, 2016.

J. B. Stott, V. Barrese, T. A. Jepps, E. V. Leighton, and I. A. Greenwood, Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats, Hypertension, vol.65, pp.676-682, 2015.

J. B. Stott, V. Barrese, M. Suresh, S. Masoodi, and I. A. Greenwood, Investigating the Role of G Protein betagamma in Kv7-Dependent Relaxations of the Rat Vasculature, Arterioscler Thromb Vasc Biol, 2018.

T. Sudo, K. Tachibana, K. Toga, S. Tochizawa, Y. Inoue et al., Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity, Biochem Pharmacol, vol.59, pp.347-356, 2000.

S. Suga, T. Kanno, Y. Ogawa, T. Takeo, N. Kamimura et al., cAMP -independent decrease of ATP-sensitive K+ channel activity by GLP-1 in rat pancreatic beta-cells, Pflugers Arch, vol.440, pp.566-572, 2000.

M. N. Sullivan, A. L. Gonzales, P. W. Pires, A. Bruhl, M. D. Leo et al., Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation, Sci Signal, vol.8, p.2, 2015.

C. W. Sun, J. R. Falck, H. Okamoto, D. R. Harder, and R. J. Roman, Role of cGMP versus 20 -HETE in the vasodilator response to nitric oxide in rat cerebral a rteries, Am J Physiol Heart Circ Physiol, vol.279, pp.339-350, 2000.

T. S. Sung, J. P. Jeon, B. J. Kim, C. Hong, S. Y. Kim et al., Molecular determinants of PKA-dependent inhibition of TRPC5 channel, Am J Physiol Cell Physiol, vol.301, pp.823-832, 2011.

H. K. Surks, N. Mochizuki, Y. Kasai, S. P. Georgescu, K. M. Tang et al., Regulation of myosin phosphatase by a specific interaction with cGMP -dependent protein kinase Ialpha, Science, vol.286, pp.1583-1587, 1999.

B. Sutter, S. Suzuki, N. F. Kassell, and K. S. Lee, Characteristics of relaxation induced by calcitonin generelated peptide in contracted rabbit basilar artery, J Neurosurg, vol.82, pp.91-96, 1995.

R. D. Swayze and A. P. Braun, A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and cGMP, J Biol Chem, vol.276, pp.19729-19737, 2001.

A. Tabernero, J. Giraldo, and E. Vila, Effect of NG-nitro-L-arginine methylester (L-NAME) on functional and biochemical alpha 1-adrenoceptor-mediated responses in rat blood vessels, Br J Pharmacol, vol.117, pp.757-763, 1996.

H. Taguchi, D. D. Heistad, T. Kitazono, and F. M. Faraci, Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels, Circ Res, vol.76, pp.1057-1062, 1995.

K. Taguchi, M. Ueda, and T. Kubo, Effects of cAMP and cGMP on L-type calcium channel currents in rat mesenteric artery cells, Jpn J Pharmacol, vol.74, pp.179-186, 1997.

S. Takahashi, H. Lin, N. Geshi, Y. Mori, Y. Kawarabayashi et al., Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6, J Physiol, vol.586, pp.4209-4223, 2008.

K. Tanaka, T. Kawano, A. Nakamura, H. Nazari, S. Kawahito et al., Isoflurane activates sarcolemmal adenosine triphosphate-sensitive potassium channels in vascular smooth muscle cells: a role for protein kinase A, Anesthesiology, vol.106, pp.984-991, 2007.

Y. Tanaka, M. Aida, H. Tanaka, K. Shigenobu, and L. Toro, Involvement of maxi-K(Ca) channel activation in atrial natriuretic peptide-induced vasorelaxation, Naunyn Schmiedebergs Arch Pharmacol, vol.357, pp.705-708, 1998.

Y. Tanaka, T. Igarashi, H. Kaneko, F. Yamaki, Y. Mochizuki et al., NO-mediated MaxiK(Ca) channel activation produces relaxation of guinea pig aorta independently of voltage-dependent L-type Ca(2+) channels, Gen Pharmacol, vol.34, pp.159-165, 2000.

Y. Tanaka, P. Meera, M. Song, H. G. Knaus, and L. Toro, Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes, J Physiol, vol.502, pp.545-557, 1997.

Y. Tanaka, Y. Mochizuki, H. Hirano, M. Aida, H. Tanaka et al., Role of MaxiK channels in vasoactive intestinal peptide-induced relaxation of rat mesenteric artery, Eur J Pharmacol, vol.383, pp.291-296, 1999.

J. Taniguchi, K. I. Furukawa, and M. Shigekawa, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflugers Arch, vol.423, pp.167-172, 1993.

K. Tasken and E. M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol Rev, vol.84, pp.137-167, 2004.

M. S. Taylor and J. N. Benoit, Effect of milrinone on small mesenteric artery vasoconstriction: role of K(+) channels, Am J Physiol, vol.277, pp.69-78, 1999.

M. S. Taylor, C. Okwuchukwuasanya, C. K. Nickl, W. Tegge, J. E. Brayden et al., Inhibition of cGMP-dependent protein kinase by the cell -permeable peptide DT-2 reveals a novel mechanism of vasoregulation, Mol Pharmacol, vol.65, pp.1111-1119, 2004.

B. Teng, S. L. Tilley, C. Ledent, and S. J. Mustafa, In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice, 2016.

K. Tewari and J. M. Simard, Protein kinase A increases availability of calcium channels in smooth muscle cells from guinea pig basilar artery, Pflugers Arch, vol.428, pp.9-16, 1994.

K. Tewari and J. M. Simard, Sodium nitroprusside and cGMP decrease Ca2+ channel availability in basilar artery smooth muscle cells, Pflugers Arch, vol.433, pp.304-311, 1997.

M. Thunemann, L. Wen, M. Hillenbrand, A. Vachaviolos, S. Feil et al., Transgenic mice for cGMP imaging, Circ Res, vol.113, pp.365-371, 2013.

L. Tian, L. S. Coghill, H. Mcclafferty, S. H. Macdonald, F. A. Antoni et al., Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase, Proc Natl Acad Sci U S A, vol.101, pp.11897-11902, 2004.

L. Tian, R. R. Duncan, M. S. Hammond, L. S. Coghill, H. Wen et al., Alternative splicing switches potassium channel sensitivity to protein phosphorylation, J Biol Chem, vol.276, pp.7717-7720, 2001.

L. Tian, O. Jeffries, H. Mcclafferty, A. Molyvdas, I. C. Rowe et al., Palmitoylation gates phosphorylation -dependent regulation of BK potassium channels, Proc Natl Acad Sci U S A, vol.105, pp.21006-21011, 2008.

D. Tsvetkov, M. Kassmann, J. Y. Tano, L. Chen, J. Schleifenbaum et al., Do KV 7.1 channels contribute to control of arterial vascular tone, Br J Pharmacol, vol.174, pp.150-162, 2017.

C. E. Van-hove, C. Van-der-donckt, A. G. Herman, H. Bult, and P. Fransen, Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells, Br J Pharmacol, vol.158, pp.920-930, 2009.

P. Viard, N. Macrez, C. Mironneau, and J. Mironneau, Involvement of both G protein alphas and beta gamma subunits in beta-adrenergic stimulation of vascular L-type Ca(2+) channels, Br J Pharmacol, vol.132, pp.669-676, 2001.

P. Y. Von-der-weid and D. F. Van-helden, Beta -adrenoceptor-mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery, Am J Physiol, vol.270, pp.1687-1695, 1996.

M. Vrolix, L. Raeymaekers, F. Wuytack, F. Hofmann, and R. Casteels, Cyclic GMP -dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol, Biochem J, vol.255, pp.855-863, 1988.

R. Walker-gray, F. Stengel, and M. G. Gold, Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross -linking approaches, Proc Natl Acad Sci U S A, vol.114, pp.10414-10419, 2017.

S. Wang, Y. Zhang, W. G. Wier, X. Yu, M. Zhao et al., Role of store-operated Ca(2+) entry in adenosine-induced vasodilatation of rat small mesenteric artery, Am J Physiol Heart Circ Physiol, vol.297, pp.347-354, 2009.

M. Wareing, S. L. Greenwood, G. K. Fyfe, P. N. Baker, and M. J. Taggart, Glibenclamide inhibits agonistinduced vasoconstriction of placental chorionic plate arteries, Placenta, vol.27, pp.660-668, 2006.

S. Weiss, S. Oz, A. Benmocha, and N. Dascal, Regulation of cardiac L-type Ca(2)(+) channel CaV1.2 via the beta-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties, Circ Res, vol.113, pp.617-631, 2013.

A. Welling, A. Ludwig, S. Zimmer, N. Klugbauer, V. Flockerzi et al., Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels, Circ Res, vol.81, pp.526-532, 1997.

G. C. Wellman, A. D. Bonev, M. T. Nelson, and J. E. Brayden, Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca(2+)-dependent K+ channels, Circ Res, vol.79, pp.1024-1030, 1996.

G. C. Wellman, J. M. Quayle, and N. B. Standen, ATP-sensitive K+ channel activation by calcitonin generelated peptide and protein kinase A in pig coronary arterial smooth muscle, J Physiol, pp.117-129, 1998.

G. C. Wellman, L. F. Santana, A. D. Bonev, and M. T. Nelson, Role of phospholamban in th e modulation of arterial Ca(2+) sparks and Ca(2+)-activated K(+) channels by cAMP, Am J Physiol Cell Physiol, vol.281, pp.1029-1037, 2001.

R. White, F. E. Bottrill, D. Siau, and C. R. Hiley, Protein kinase A-dependent and -independent effects of isoproterenol in rat isolated mesenteric artery: interactions with levcromakalim, J Pharmacol Exp Ther, vol.298, pp.917-924, 2001.

R. E. White, D. J. Darkow, and J. L. Lang, Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism, Circ Res, vol.77, pp.936-942, 1995.

R. E. White, G. Han, M. Maunz, C. Dimitropoulou, A. M. El--mowafy et al., Endothelium-independent effect of estrogen on Ca(2+)-activated K(+) channels in human coronary artery smooth muscle cells, Cardiovasc Res, vol.53, pp.650-661, 2002.

R. E. White, J. P. Kryman, A. M. El--mowafy, G. Han, and G. O. Carrier, cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells, Circ Res, vol.86, pp.897-905, 2000.

J. Wie, S. Jeong, M. Kwak, J. Myeong, M. Chae et al., The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodies terase 5 inhibitor via the cyclic guanosine 3'5'-monophosphate, Pflugers Arch, vol.469, pp.693-702, 2017.

D. L. Williams, . Jr, G. M. Katz, L. Roy-contancin, and J. P. Reuben, Guanosine 5'-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells, Proc Natl Acad Sci U S A, vol.85, pp.9360-9364, 1988.

L. Wolfe, J. D. Corbin, and S. H. Francis, Characterization of a novel isozyme of cGMP -dependent protein kinase from bovine aorta, J Biol Chem, vol.264, pp.7734-7741, 1989.

A. A. Wooldridge, J. A. Macdonald, F. Erdodi, C. Ma, M. A. Borman et al., Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 i n response to cyclic nucleotides, J Biol Chem, vol.279, pp.34496-34504, 2004.

C. C. Wu, S. J. Chen, and C. J. Garland, NO and KATP channels underlie endotoxin -induced smooth muscle hyperpolarization in rat mesenteric resistance arteries, Br J Pharmacol, vol.142, pp.479-484, 2004.

R. S. Wu and S. O. Marx, The BK potassium channel in the vascular smooth muscle and kidney: alphaand beta-subunits, Kidney Int, vol.78, pp.963-974, 2010.

J. Xie and D. P. Mccobb, Control of alternative splicing of potassium channels by stress hormones, Science, vol.280, pp.443-446, 1998.

Z. Xiong and N. Sperelakis, Regulation of L-type calcium channels of vascular smooth muscle cells, J Mol Cell Cardiol, vol.27, pp.75-91, 1995.

Z. Xiong, N. Sperelakis, and C. Fenoglio-preiser, Isoproterenol modulates the calcium channels through two different mechanisms in smooth-muscle cells from rabbit portal vein, Pflugers Arch, vol.428, pp.105-113, 1994.

Z. Xiong, N. Sperelakis, and C. Fenoglio-preiser, Regulation of L-type calcium channels by cyclic nucleotides and phosphorylation in smooth muscle cells from rabbit portal vein, J Vasc Res, vol.31, pp.271-279, 1994.

S. Z. Xu and D. J. Beech, TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells, Circ Res, vol.88, pp.84-87, 2001.

X. Xu and K. S. Lee, Characterization of the ATP-inhibited K+ current in canine coronary smooth muscle cells, Pflugers Arch, vol.427, pp.110-120, 1994.

L. Yang, G. Liu, S. I. Zakharov, A. M. Bellinger, M. Mongillo et al., Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits, Circ Res, vol.101, pp.465-474, 2007.

Y. Yang, Y. Shi, S. Guo, S. Zhang, N. Cui et al., PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery, Biochim Biophys Acta, vol.1778, pp.88-96, 2008.

S. Y. Yeung and I. A. Greenwood, Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells, Br J Pharmacol, vol.146, pp.585-595, 2005.

H. Yokoshiki, Y. Katsube, and N. Sperelakis, Regulation of Ca2+ channel currents by intracellular ATP in smooth muscle cells of rat mesenteric artery, Am J Physiol, vol.272, pp.814-819, 1997.

Y. Yoshida, J. Q. Cai, and S. Imai, Plasma membrane Ca(2+)-pump ATPase is not a substrate for cGMPdependent protein kinase, J Biochem, vol.111, pp.559-562, 1992.

J. Zanzinger, J. Czachurski, and H. Seller, Role of calcium-dependent K+ channels in the regulation of arterial and venous tone by nitric oxide in pigs, Pflugers Arch, vol.432, pp.671-677, 1996.

D. M. Zhang, Y. Chai, J. R. Erickson, J. H. Brown, D. M. Bers et al., Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes, J Physiol, vol.592, pp.971-990, 2014.

D. X. Zhang, L. Borbouse, D. Gebremedhin, S. A. Mendoza, N. S. Zinkevich et al., H2O2-induced dilation in human coronary arterioles : role of protein kinase G dimerization and largeconductance Ca2+-activated K+ channel activation, Circ Res, vol.110, pp.471-480, 2012.

H. L. Zhang and T. B. Bolton, Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells, Br J Pharmacol, vol.118, pp.105-114, 1996.

P. Zhang, Y. Ma, Y. Wang, X. Ma, Y. Huang et al., Nitric oxide and protein kinase G act on TRPC1 to inhibit 11,12-EET-induced vascular relaxation, Cardiovasc Res, vol.104, pp.138-146, 2014.

S. Zhang, Y. Liu, S. Guo, J. Zhang, X. Chu et al., Vasoactive intestinal polypeptide relaxes isolated rat pulmonary artery rings through two distinct mechanisms, J Physiol Sci, vol.60, pp.389-397, 2010.

S. L. Zhang, Y. Yu, J. Roos, J. A. Kozak, T. J. Deerinck et al., STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane, Nature, vol.437, pp.902-905, 2005.

Y. Zhang, T. Tazzeo, V. Chu, and L. J. Janssen, Membrane potassium currents in human radial artery and their regulation by nitric oxide donor, Cardiovasc Res, vol.71, pp.383-392, 2006.

X. Zheng, N. S. Zinkevich, D. Gebremedhin, K. M. Gauthier, Y. Nishijima et al., Arachidonic acid-induced dilation in human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4 -mediated Ca2+ entry, J Am Heart Assoc, vol.2, p.80, 2013.

J. Zhong, C. W. Dessauer, K. D. Keef, and J. R. Hume, Regulation of L-type Ca2+ channels in rabbit portal vein by G protein alphas and betagamma subunits, J Physiol, vol.517, pp.109-120, 1999.

J. Zhong, J. R. Hume, and K. D. Keef, Anchoring protein is required for cAMP -dependent stimulation of L-type Ca(2+) channels in rabbit portal vein, Am J Physiol, vol.277, pp.840-844, 1999.

J. Zhong, J. R. Hume, and K. D. Keef, beta -Adrenergic receptor stimulation of L-type Ca2+ channels in rabbit portal vein myocytes involves both alphas and betagamma G protein sub units, J Physiol, vol.531, pp.105-115, 2001.

X. Zhou, I. Wulfsen, M. Korth, H. Mcclafferty, R. Lukowski et al., Palmitoylation and membrane association of the stress axis regulated insert (STREX) controls BK channel regulation by protein kinase C, J Biol Chem, vol.287, pp.32161-32171, 2012.

X. B. Zhou, C. Arntz, S. Kamm, K. Motejlek, U. Sausbier et al., A molecular switch for specific stimulation of the BKCa channel by cGMP and cAMP kinase, J Biol Chem, vol.276, pp.43239-43245, 2001.

X. B. Zhou, I. Wulfsen, E. Utku, U. Sausbier, M. Sausbier et al., Dual role of protein kinase C on BK channel regulation, Proc Natl Acad Sci U S A, vol.107, pp.8005-8010, 2010.

Y. Zhou and C. J. Lingle, Paxilline inhibits BK channels by an almost exclusively closed -channel block mechanism, J Gen Physiol, vol.144, pp.415-440, 2014.

S. Zhu, G. Han, and R. E. White, PGE2 action in human coronary artery smooth muscle: role of potassium channels and signaling cross -talk, J Vasc Res, vol.39, pp.477-488, 2002.

B. J. Zieba, M. V. Artamonov, L. Jin, K. Momotani, R. Ho et al., The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down -regulation of RhoA activity, J Biol Chem, vol.286, pp.16681-16692, 2011.