W. Vainchenker and R. Kralovics, Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms, Blood, vol.129, issue.6, pp.667-679, 2017.

S. Sozer, The presence of JAK2V617F mutation in the liver endothelial cells of patients 700 with Budd-Chiari syndrome, Blood, vol.113, issue.21, pp.5246-5249, 2009.

V. Rosti, Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation, Blood, vol.121, issue.2, pp.360-368, 2013.

V. Rosti, High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis, PLOS ONE, vol.705, issue.12, p.15277, 2010.

H. Ricardo, Granulocyte whole exome sequencing and endothelial JAK2V617F in patients with JAK2V617F positive Budd-Chiari Syndrome without myeloproliferative neoplasm, British Journal of Haematology, vol.180, issue.3, pp.443-445, 2018.

L. Teofili, Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in 710 a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms, Blood, vol.117, issue.9, pp.2700-2707, 2011.

T. Barbui, G. Finazzi, and A. Falanga, Myeloproliferative neoplasms and thrombosis, Blood, vol.122, issue.13, pp.2176-2184, 2013.

É. Pósfai, I. Marton, Z. Borbényi, and A. Nemes, Myocardial infarction as a thrombotic complication 715 of essential thrombocythemia and polycythemia vera, Anatol J Cardiol, vol.16, issue.6, pp.397-402, 2016.

A. I. Larsen, Characteristics and outcomes of patients with acute myocardial infarction and angiographically normal coronary arteries, The American Journal of Cardiology, vol.95, issue.2, pp.261-263, 2005.

S. Agewall, ESC working group position paper on myocardial infarction with non-720 32 obstructive coronary arteries, Eur Heart J, vol.38, issue.3, pp.143-153, 2017.

M. J. Davies, The pathophysiology of acute coronary syndromes, Heart, vol.83, issue.3, pp.361-366, 2000.

F. Crea and P. Libby, Acute Coronary Syndromes: The Way Forward From Mechanisms to Precision Treatment, Circulation, vol.136, issue.12, pp.1155-1166, 2017.

E. Oberlin, E. Hafny, B. Petit-cocault, L. Souyri, and M. , Definitive human and mouse hematopoiesis 725 originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression, Int. J. Dev. Biol, vol.54, issue.6-7, pp.1165-1173, 2010.

B. J. Scherlag, G. Kabell, L. Harrison, and R. Lazzara, Mechanisms of bradycardia-induced ventricular arrhythmias in myocardial ischemia and infarction, Circulation, vol.65, issue.7, pp.1429-1434, 1982.

B. Kilani, Comparison of endothelial promoter efficiency and specificity in mice reveals 730 a subset of Pdgfb-positive hematopoietic cells, J. Thromb. Haemost, vol.17, issue.5, pp.827-840, 2019.

C. M. Boulanger, X. Loyer, P. Rautou, and N. Amabile, Extracellular vesicles in coronary artery disease, Nat Rev Cardiol, vol.14, issue.5, pp.259-272, 2017.

G. Van-niel, D. Angelo, G. Raposo, and G. , Shedding light on the cell biology of extracellular vesicles
URL : https://hal.archives-ouvertes.fr/hal-02359760

, Nat. Rev. Mol. Cell Biol, vol.19, issue.4, pp.213-228, 2018.

C. Donadee, Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion, Circulation, vol.124, issue.4, pp.465-476, 2011.

S. M. Camus, Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease, Blood, vol.125, issue.24, pp.3805-3814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02347169

P. M. Vanhoutte, Y. Zhao, A. Xu, and S. Leung, Thirty Years of Saying NO: Sources, Fate, p.740

, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator, Circ. Res, vol.119, issue.2, pp.375-396, 2016.

R. Stocker and J. F. Keaney, Role of Oxidative Modifications in Atherosclerosis, Physiological Reviews, vol.84, issue.4, pp.1381-1478, 2004.

N. Teng, The roles of myeloperoxidase in coronary artery disease and its potential 745 implication in plaque rupture, Redox Report, vol.22, issue.2, pp.51-73, 2017.

S. Sen-banerjee, Kruppel-Like Factor 2 as a Novel Mediator of Statin Effects in Endothelial Cells, Circulation, vol.112, issue.5, pp.720-726, 2005.

R. P. Mason, M. F. Walter, and R. F. Jacob, Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress, Circulation, vol.109, issue.21, pp.34-41, 2004.

O. Y. Bang, K. Toyoda, J. F. Arenillas, L. Liu, and J. S. Kim, Intracranial Large Artery Disease of Non-Atherosclerotic Origin: Recent Progress and Clinical Implications, J Stroke, vol.20, issue.2, pp.208-217, 2018.

T. Neunteufl, S. Heher, T. Stefenelli, I. Pabinger, and H. Gisslinger, Endothelial dysfunction in patients with polycythaemia vera, Br. J. Haematol, vol.115, issue.2, pp.354-359, 2001.

A. Charpentier, Microparticle phenotypes are associated with driver mutations and distinct 755 thrombotic risks in essential thrombocythemia, Haematologica, vol.101, issue.9, pp.365-368, 2016.

X. Tan, Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation, Thrombosis and Haemostasis, vol.109, issue.06, pp.1025-1032, 2013.

H. Baccouche, The evaluation of the relevance of thrombin generation and procoagulant 760 activity in thrombotic risk assessment in BCR-ABL-negative myeloproliferative neoplasm patients, Int J Lab Hematol, vol.39, issue.5, pp.502-507, 2017.

J. Duchemin, Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms, Thromb. Res, vol.126, issue.3, pp.238-242, 2010.

M. Marchetti, Phospholipid-dependent procoagulant activity is highly expressed by 765 circulating microparticles in patients with essential thrombocythemia, Am. J. Hematol, vol.89, issue.1, pp.68-73, 2014.

M. C. Trappenburg, Elevated procoagulant microparticles expressing endothelial and 34

, platelet markers in essential thrombocythemia, Haematologica, vol.94, issue.7, pp.911-918, 2009.

W. Zhang, Clinical significance of circulating microparticles in Ph? myeloproliferative 770 neoplasms, Oncol Lett, vol.14, issue.2, pp.2531-2536, 2017.

. Moles-moreau-m-p, Flow cytometry-evaluated platelet CD36 expression, reticulated platelets and platelet microparticles in essential thrombocythaemia and secondary thrombocytosis, Thromb. Res, vol.126, issue.5, pp.394-396, 2010.

J. Kissova, P. Ovesna, A. Bulikova, J. Zav?elova, and M. Penka, Increasing procoagulant activity of 775 circulating microparticles in patients with Philadelphia-negative myeloproliferative neoplasms: a single-centre experience, Blood Coagul. Fibrinolysis, vol.26, issue.4, pp.448-453, 2015.

C. Musolino, Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia, Clin. Biochem, vol.45, pp.1439-1443, 2012.

A. Durmus, Increased oxidative stress in patients with essential thrombocythemia, Eur Rev Med Pharmacol Sci, vol.17, issue.21, pp.2860-2866, 2013.

C. Vener, Oxidative stress is increased in primary and post-polycythemia vera myelofibrosis, Exp. Hematol, vol.38, issue.11, pp.1058-1065, 2010.

H. C. Hasselbalch, Whole blood transcriptional profiling reveals deregulation of oxidative 785 and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression, PLoS ONE, vol.9, issue.11, p.112786, 2014.

A. S. Said and A. Doctor, Influence of red blood cell-derived microparticles upon vasoregulation, Blood Transfus, vol.15, issue.6, pp.522-534, 2017.

M. Adam, Red blood cells serve as intravascular carriers of myeloperoxidase, Journal of Molecular and Cellular Cardiology, vol.74, pp.353-363, 2014.

I. V. Gorudko, Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level, Archives of Biochemistry and Biophysics, vol.591, pp.87-97, 2016.

C. David, Inhibition of MPO (Myeloperoxidase) Attenuates Endothelial Dysfunction in Mouse Models of Vascular Inflammation and Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.0, issue.0

T. W. Benson, A single high-fat meal provokes pathological erythrocyte remodeling and increases myeloperoxidase levels: implications for acute coronary syndrome, Laboratory, vol.800, issue.10, p.1300, 2018.

S. Baldus, Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion, Free Radical Biology and Medicine, vol.37, issue.6, pp.902-911, 2004.

A. Angona, Dynamics of JAK2 V617F allele burden of CD34+ haematopoietic progenitor cells in patients treated with ruxolitinib, Br. J. Haematol, vol.172, issue.4, pp.639-642, 2016.

W. Vainchenker, JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders, F1000Res, vol.7, p.82, 2018.

C. M. Boulanger, Circulating Microparticles From Patients With Myocardial Infarction Cause Endothelial Dysfunction, Circulation, vol.104, issue.22, pp.2649-2652, 2001.

P. Rautou, Abnormal plasma microparticles impair vasoconstrictor responses in patients 810 with cirrhosis, Gastroenterology, vol.143, issue.1, pp.166-176, 2012.

C. Marty, A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression, Leukemia, vol.27, issue.11, pp.2187-2195, 2013.

Y. Wang, Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis, Nature, vol.465, issue.7297, pp.483-486, 2010.

F. Schnütgen and N. B. Ghyselinck, Adopting the good reFLEXes when generating conditional 36 alterations in the mouse genome, Transgenic Res, vol.16, issue.4, pp.405-413, 2007.

A. Payancé, Hepatocyte microvesicle levels improve prediction of mortality in patients with cirrhosis, Hepatology, 2018.

,

L. Kubovcakova, Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model, Blood, vol.121, issue.7, pp.1188-1199, 2013.

S. Maschalidi, F. E. Sepulveda, A. Garrigue, A. Fischer, and G. De-saint-basile, Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice, Blood, vol.825, issue.1, pp.60-71, 2016.

R. Kou, T. Shiroto, J. L. Sartoretto, and T. Michel, Suppression of G?s synthesis by simvastatin treatment of vascular endothelial cells, J. Biol. Chem, vol.287, issue.4, pp.2643-2651, 2012.

L. Lamrani, Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm, Blood, vol.124, issue.7, pp.1136-1145, 2014.

P. Poullet, S. Carpentier, and E. Barillot, myProMS, a web server for management and validation of mass spectrometry-based proteomic data, Proteomics, vol.7, issue.15, pp.2553-2556, 2007.

B. Valot, O. Langella, E. Nano, and M. Zivy, MassChroQ: a versatile tool for mass spectrometry quantification, Proteomics, vol.11, issue.17, pp.3572-3577, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01481216

J. A. Vizcaíno, update of the PRIDE database and its related tools, Nucleic Acids Res, vol.835, issue.D1, pp.447-456, 2016.