C. A. Sennoga, E. Kanbar, L. Auboire, P. A. Dujardin, D. Fouan et al., Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring, Expert Opin. Drug Deliv, vol.14, pp.1031-1043, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02438187

G. Dimcevski, S. Kotopoulis, T. Bjanes, D. Hoem, J. Schjott et al., A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer, J. Controlled Release : Official J. Controlled Release Soc, vol.243, pp.172-181, 2016.

F. Hirabayashi, K. Iwanaga, T. Okinaga, O. Takahashi, W. Ariyoshi et al., Epidermal growth factor receptor-targeted sonoporation with microbubbles enhances therapeutic efficacy in a squamous cell carcinoma model, PLoS One, vol.12, p.185293, 2017.

Y. Zhang, S. Chang, J. Sun, S. Zhu, C. Pu et al., Targeted microbubbles for ultrasound mediated short hairpin RNA plasmid transfection to inhibit survivin gene expression and induce apoptosis of ovarian cancer A2780/ DDP cells, Mol. Pharm, vol.12, pp.3137-3145, 2015.

B. H. Lammertink, C. Bos, R. Deckers, G. Storm, C. T. Moonen et al., Sonochemotherapy: from bench to bedside, vol.6, p.138, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438239

O. Shpak, M. Verweij, N. Jong, and M. Versluis, Droplets, bubbles and ultrasound interactions, vol.880, pp.157-174, 2016.

J. Wu, Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound Med. Biol, vol.28, pp.125-129, 2002.

A. A. Doinikov and A. Bouakaz, Acoustic microstreaming around a gas bubble, J. Acoust. Soc. Am, vol.127, pp.703-709, 2010.

L. Junge, C. D. Ohl, B. Wolfrum, M. Arora, and R. Ikink, Cell detachment method using shock-wave-induced cavitation, Ultrasound Med. Biol, vol.29, pp.1769-1776, 2003.

C. D. Ohl and B. Wolfrum, Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation, BBA, vol.1624, pp.131-138, 2003.

C. D. Ohl, M. Arora, R. Ikink, N. Jong, M. Versluis et al., Sonoporation from jetting cavitation bubbles, Biophys. J, vol.91, pp.4285-4295, 2006.

M. Postema, A. Van-wamel, F. J. Cate, and N. Jong, High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles, Med. Phys, vol.32, pp.3707-3711, 2005.

I. Lentacker, I. De-cock, R. Deckers, S. C. De-smedt, and C. T. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms, Adv. Drug Deliv. Rev, vol.72, pp.49-64, 2014.

L. J. Juffermans, O. Kamp, P. A. Dijkmans, C. A. Visser, and R. J. Musters, Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels, Ultrasound Med. Biol, vol.34, pp.502-508, 2008.

L. J. Juffermans, P. A. Dijkmans, R. J. Musters, C. A. Visser, and O. Kamp, Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide, American journal of physiology, vol.291, pp.1595-1601, 2006.

L. J. Juffermans, A. Van-dijk, C. A. Jongenelen, B. Drukarch, A. Reijerkerk et al., Ultrasound and microbubble-induced intra-and intercellular bioeffects in primary endothelial cells, Ultrasound Med. Biol, vol.35, pp.1917-1927, 2009.

K. Kooiman, A. F. Van-der-steen, and N. Jong, Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permability, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.60, pp.1811-1815, 2013.

P. Qin, L. Xu, P. Cai, Y. Hu, and A. C. Yu, Subcellular impact of sonoporation on plant cells: issues to be addressed in ultrasound-mediated gene transfer, Ultrason. Sonochem, vol.20, pp.247-253, 2013.

E. Vanbavel, Effects of shear stress on endothelial cells: possible relevance for ultrasound applications, Prog. Biophys. Biophys. Chem, vol.93, pp.374-383, 2007.

C. Jia, L. Xu, T. Han, P. Cai, A. C. Yu et al., Generation of reactive oxygen species in heterogeneously sonoporated cells by microbubbles with single-pulse ultrasound, Ultrasound Med. Biol, vol.44, pp.1074-1085, 2018.

B. D. Meijering, L. J. Juffermans, A. Van-wamel, R. H. Henning, I. S. Zuhorn et al., Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation, Circ. Res, vol.104, pp.679-687, 2009.

T. A. Tran, J. Y. Le-guennec, P. Bougnoux, F. Tranquart, and A. Bouakaz, Characterization of cell membrane response to ultrasound activated microbubbles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.55, pp.43-49, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01822233

T. A. Tran, S. Roger, J. Y. Le-guennec, F. Tranquart, and A. Bouakaz, Effect of ultrasoundactivated microbubbles on the cell electrophysiological properties, Ultrasound Med. Biol, vol.33, pp.158-163, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141873

J. Garrec, A. Monari, X. Assfeld, L. M. Mir, and M. Tarek, Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not "Float, J. Phys. Chem. Lett, vol.5, pp.1653-1658, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01153355

M. Tarek, D. J. Tobias, and M. L. Klein, Molecular dynamics simulation of tetradecyltrimethylammonium bromide monolayers at the air/water interface, J. Phys. Chem, vol.99, pp.1393-1402, 1995.

J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'connor, D. J. Tobias et al., Update of the CHARMM allatom additive force field for lipids: validation on six lipid types, J. Phys. Chem. B, vol.114, pp.7830-7843, 2010.

P. Bjelkmar, P. Larsson, M. A. Cuendet, B. Hess, and E. Lindahl, Implementation of the CHARMM Force Field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models, J. Chem. Theor. Comput, vol.6, pp.459-466, 2010.

T. J. Piggot, A. Pineiro, and S. Khalid, Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study, J. Chem. Theory Comput, vol.8, pp.4593-4609, 2012.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, vol.79, pp.926-935, 1983.

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh ewald method, J. Chem. Phys, vol.103, pp.8577-8593, 1995.

B. Hess, P-LINCS: a parallel linear constraint solver for molecular simulation, J. Chem. Theory Comput, vol.4, pp.116-122, 2008.

S. Miyamoto and P. A. Kollman, SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem, vol.13, pp.952-962, 1992.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys, vol.52, pp.255-268, 1984.

W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A Gen. Phys, vol.31, pp.1695-1697, 1985.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys, vol.52, pp.7182-7190, 1981.

S. Nosé and M. L. Klein, Constant pressure molecular dynamics for molecular systems, Mol. Phys, vol.50, pp.1055-1076, 1983.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4: slgorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput, vol.4, pp.435-447, 2008.

D. Van-der, E. Spoel, B. Lindahl, G. Hess, A. E. Groenhof et al., GROMACS: fast, flexible, and free, J. Comput. Chem, vol.26, pp.1701-1718, 2005.

M. Chen, M. A. Cuendet, and M. E. Tuckerman, Heating and flooding: a unified approach for rapid generation of free energy surfaces, J. Chem. Phys, vol.137, p.24102, 2012.

D. Bonhenry, M. Tarek, and F. Dehez, Effects of phospholipid composition on the transfer of a small cationic peptide across a model biological membrane, J. Chem. Theor. Comput, vol.9, pp.5675-5684, 2018.

L. Rems, M. Viano, M. A. Kasimova, D. Miklav?i?, and M. Tarek, The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study, Bioelectrochemistry, vol.125, pp.46-57, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02275573

L. Maragliano, A. Fischer, E. Vanden-eijnden, and G. Ciccotti, String method in collective variables: minimum free energy paths and isocommittor surfaces, J. Chem. Phys, vol.125, p.24106, 2006.

J. B. Abrams and M. E. Tuckerman, Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations, J. Phys. Chem. B, vol.112, pp.15742-15757, 2008.

A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.12562-12566, 2002.

Y. Liu and M. E. Tuckerman, Generalized gaussian moment thermostatting: a new continuous dynamical approach to the canonical ensemble, J. Chem. Phys, vol.112, pp.1685-1700, 2000.

M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi et al., PLUMED: a portable plugin for free-energy calculations with molecular dynamics, Comput. Phys. Commun, vol.180, pp.1961-1972, 2009.

J. Van-de-vondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: fast and accurate density functional calculations using a mixed faussian and plane waves approach, Comput. Phys. Commun, vol.167, pp.103-128, 2005.

J. Van-de-vondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys, vol.127, p.114105, 2007.

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space gaussian pseudopotentials, Phys. Rev. B: Condens. Matter, vol.54, pp.1703-1710, 1996.

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space gaussian pseudopotentials from H to Rn, Phys. Rev. B, vol.58, p.3641, 1998.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A Gen. Phys, vol.38, pp.3098-3100, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, vol.37, pp.785-789, 1988.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, vol.126, p.14101, 2007.

G. J. Martina, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys, vol.101, pp.4177-4189, 1994.

A. Laio, A. Rodriguez-fortea, F. L. Gervasio, M. Ceccarelli, and M. Parrinello, Assessing the accuracy of metadynamics, J. Phys. Chem. B, vol.109, pp.6714-6721, 2005.

P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics, J. Phys. Chem. B, vol.110, pp.3533-3539, 2006.

A. Zeghimi, A. Novell, R. A. Thepault, P. Vourc'h, A. Bouakaz et al., Serum influence on in-vitro gene delivery using microbubble-assisted ultrasound, J. Drug Target, vol.22, pp.748-760, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02438479

M. Schneider, Characteristics of sonovuetrade mark, Echocardiography, vol.16, pp.743-746, 1999.

M. Schneider, SonoVue, a new ultrasound contrast agent, Eur. Radiol, vol.9, pp.347-348, 1999.

B. Markelc, G. Tevz, M. Cemazar, S. Kranjc, J. Lavrencak et al., Muscle gene electrotransfer is increased by the antioxidant tempol in mice, Gene Ther, vol.19, pp.312-320, 2012.

J. M. Escoffre, A. Novell, S. Serriere, T. Lecomte, and A. Bouakaz, Irinotecan delivery by microbubble-assisted ultrasound: in vitro validation and a pilot preclinical study, Mol. Pharm, vol.10, pp.2667-2675, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02438593

A. Zeghimi, J. M. Escoffre, and A. Bouakaz, Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: a electron microscopy study, Phys. Biol, vol.12, p.66007, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438214

J. M. Escoffre, A. Novell, J. Piron, A. Zeghimi, A. Doinikov et al., Microbubble attenuation and destruction: are they involved in sonoporation efficiency?, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.60, pp.46-52, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02438857

J. M. Escoffre, J. Piron, A. Novell, and A. Bouakaz, Doxorubicin delivery into tumor cells with ultrasound and microbubbles, Mol. Pharm, vol.8, pp.799-806, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02438975

J. M. Escoffre, K. Kaddur, M. P. Rols, and A. Bouakaz, In vitro gene transfer by electrosonoporation, Ultrasound Med. Biol, vol.36, pp.1746-1755, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02438997

P. Marmottant, S. Van-der-meer, M. Emmer, and M. Versluis, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Am, vol.118, pp.3499-3505, 2005.

T. Ilovitsh, A. Ilovitsh, J. Foiret, C. F. Caskey, J. Kusunose et al., Enhanced microbubble contrast agent oscillation following 250 kHz insonation, Sci. Rep, vol.8, p.16347, 2018.

S. Chakma and V. S. Moholkar, Numerical simulation and investigation of system parameters of sonochemical process, Chi. J. Eng, 2013.

E. Codorniu-hernandez and P. G. Kusalik, Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer, J. Am. Chem. Soc, vol.134, pp.532-538, 2012.

B. H. Bielski, R. L. Arudi, and M. W. Sutherland, A study of the reactivity of HO2/O2-with unsaturated fatty acids, J. Biol. Chem, vol.258, pp.4759-4761, 1983.

R. M. Cordeiro, Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation, BBA, vol.2014, pp.438-444, 1838.

B. D. Meijering, R. H. Henning, W. H. Van-gilst, I. Gavrilovic, A. Van-wamel et al., Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells, J. Drug Target, vol.15, pp.664-671, 2007.

Y. I. Yoon, T. J. Yoon, and H. J. Lee, Optimization of ultrasound parameters for microbubble-nanoliposome complex-mediated delivery, Ultrasonography, vol.34, pp.297-303, 2015.