A. Fleming, On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae, Br. J. Exp. Pathol, vol.10, pp.226-236, 1929.

A. Cassini, Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect. Dis, vol.19, pp.56-66, 2019.

R. Laxminarayan, D. Sridhar, M. Blaser, M. Wang, and M. Woolhouse, Achieving global targets for antimicrobial resistance, Science, vol.353, pp.874-875, 2016.

L. J. Shallcross and S. C. Davies, The World Health Assembly resolution on antimicrobial resistance, J. Antimicrob. Chemother, vol.69, pp.2883-2885, 2014.

B. Spellberg, J. G. Bartlett, and D. N. Gilbert, The future of antibiotics and resistance, N. Engl. J. Med, vol.368, pp.299-302, 2013.

K. Bush, Tackling antibiotic resistance, Nat. Rev. Microbiol, vol.9, pp.894-896, 2011.

J. L. Martínez, T. M. Coque, and F. Baquero, What is a resistance gene? Ranking risk in resistomes, Nat. Rev. Microbiol, vol.13, pp.116-123, 2015.

U. Shimanovich and A. Gedanken, Nanotechnology solutions to restore antibiotic activity, J. Mater. Chem. B, vol.4, pp.824-833, 2016.

S. Van-puyvelde, S. Deborggraeve, and J. Jacobs, Why the antibiotic resistance crisis requires a One Health approach, Lancet Infect. Dis, vol.18, pp.132-134, 2018.

C. Arpin, Nationwide survey of extended-spectrum ?-lactamase-producing Enterobacteriaceae in the French community setting, J. Antimicrob. Chemother, vol.63, pp.1205-1214, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426312

E. R. Bevan, A. M. Jones, and P. M. Hawkey, Global epidemiology of CTX-M ?-lactamases: temporal and geographical shifts in genotype, J. Antimicrob. Chemother, vol.72, pp.2145-2155, 2017.

F. Robin, Inventory of Extended-Spectrum-?-Lactamase-Producing Enterobacteriaceae in France as Assessed by a Multicenter Study, Antimicrob. Agents Chemother, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595458

N. Abed, An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance, Sci. Rep, vol.5, p.13500, 2015.

H. Hashizume, In vivo efficacy of ?-lactam/tripropeptin C in a mouse septicemia model and the mechanism of reverse ?-lactam resistance in methicillin-resistant Staphylococcus aureus mediated by tripropeptin C, J. Antibiot. (Tokyo), vol.71, pp.79-85, 2018.

M. S. Butler, M. A. Blaskovich, and M. A. Cooper, Antibiotics in the clinical pipeline at the end of 2015, J. Antibiot. (Tokyo), vol.70, pp.3-24, 2017.

D. Brown, Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void?, Nat. Rev. Drug Discov, vol.14, pp.821-832, 2015.

S. M. Drawz and R. A. Bonomo, Three Decades of -Lactamase Inhibitors, Clin. Microbiol. Rev, vol.23, pp.160-201, 2010.

Z. Shen, CTX-M-190, a Novel ?-Lactamase Resistant to Tazobactam and Sulbactam, Identified in an Escherichia coli Clinical Isolate, Antimicrob. Agents Chemother, vol.61, pp.1848-1864, 2017.

J. H. Chan, S. Lim, and W. S. Wong, Antisense oligonucleotides: from design to therapeutic application, Clin. Exp. Pharmacol. Physiol, vol.33, pp.533-540, 2006.

J. B. Readman, G. Dickson, and N. G. Coldham, Translational Inhibition of CTX-M Extended Spectrum ?-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to, Cefotaxime. Front. Microbiol, vol.7, p.373, 2016.

J. B. Readman, G. Dickson, and N. G. Coldham, Tetrahedral DNA Nanoparticle Vector for Intracellular Delivery of Targeted Peptide Nucleic Acid Antisense Agents to Restore Antibiotic Sensitivity in Cefotaxime-Resistant Escherichia coli, Nucleic Acid Ther, vol.27, pp.176-181, 2017.

J. Meng, Reversion of antibiotic resistance by inhibiting mecA in clinical methicillin-resistant Staphylococci by antisense phosphorothioate oligonucleotide, J. Antibiot. (Tokyo), vol.68, pp.158-164, 2015.

S. Benizri, Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications, Bioconjug. Chem, 2019.

S. Karaki, Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer, J. Control. Release Off. J. Control. Release Soc, vol.258, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01520102

X. Xue, Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases, Nanomedicine Nanotechnol. Biol. Med, vol.14, pp.745-758, 2018.

M. J. Palte and R. T. Raines, Interaction of nucleic acids with the glycocalyx, J. Am. Chem. Soc, vol.134, pp.6218-6223, 2012.

A. Gissot, Sensitive liposomes encoded with oligonucleotide amphiphiles: a biocompatible switch, Chem. Commun, pp.5550-5552, 2008.

B. Vialet, A. Gissot, R. Delzor, and P. Barthélémy, Controlling G-quadruplex formation via lipid modification of oligonucleotide sequences, Chem. Commun, vol.53, pp.11560-11563, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02475462

O. Pokholenko, Lipid oligonucleotide conjugates as responsive nanomaterials for drug delivery, J. Mater. Chem. B, vol.1, p.5329, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02484550

J. Baillet, V. Desvergnes, A. Hamoud, L. Latxague, and P. Barthélémy, Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials, Adv. Mater, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02374786

S. Benizri, Nucleoside-Lipid-Based Nanocarriers for Sorafenib Delivery, Nanoscale Res. Lett, vol.13, p.17, 2018.

K. Oumzil, pH-Cleavable Nucleoside Lipids: A New Paradigm for Controlling the Stability of Lipid-Based Delivery Systems, ChemMedChem, vol.10, pp.1797-1801, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01543569

D. Luvino, Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles, J. Control. Release Off. J. Control. Release Soc, vol.172, pp.954-961, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00975040

G. Godeau, C. Staedel, and P. Barthélémy, Lipid-Conjugated Oligonucleotides via "Click Chemistry" Efficiently Inhibit Hepatitis C Virus Translation, J. Med. Chem, vol.51, pp.4374-4376, 2008.

A. Aimé, Quantum Dot Lipid Oligonucleotide Bioconjugates: Toward a New Anti-MicroRNA Nanoplatform, Bioconjug. Chem, vol.24, pp.1345-1355, 2013.

S. Shaikh, J. Fatima, S. Shakil, S. M. Rizvi, and M. A. Kamal, Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment, Saudi J. Biol. Sci, vol.22, pp.79-117, 1054.

A. Sileshi, A. Tenna, M. Feyissa, and W. Shibeshi, Evaluation of ceftriaxone utilization in medical and emergency wards of Tikur Anbessa specialized hospital: a prospective cross-sectional study, BMC Pharmacol. Toxicol, vol.17, p.7, 2016.

K. Hell, Worldwide clinical experience with ceftriaxone, Chemotherapy, vol.35, pp.228-235, 1989.

N. Woodford, Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK, J. Antimicrob. Chemother, vol.54, pp.735-743, 2004.

R. Ben-ami, A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.49, pp.682-690, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426315

S. B. Levy and B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med, vol.10, pp.122-129, 2004.

T. M. Barbosa and S. B. Levy, The impact of antibiotic use on resistance development and persistence, Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother, vol.3, pp.303-311, 2000.

L. Ejim, Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy, Nat. Chem. Biol, vol.7, pp.348-350, 2011.

R. C. Moellering, Antibiotic resistance: lessons for the future, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.27, issue.1, 1998.

R. Y. Pelgrift and A. J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Adv. Drug Deliv. Rev, vol.65, pp.1803-1815, 2013.

A. Sharma, D. Kumar-arya, M. Dua, G. S. Chhatwal, and A. K. Johri, Nano-technology for targeted drug delivery to combat antibiotic resistance, Expert Opin. Drug Deliv, vol.9, pp.1325-1332, 2012.

N. Abed and P. Couvreur, Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections, Int. J. Antimicrob. Agents, vol.43, pp.485-496, 2014.

A. C. Saúde, M. D. Cherobim, A. C. Amaral, S. C. Dias, and O. L. Franco, Nanoformulated antibiotics: the next step for pathogenic bacteria control, Curr. Med. Chem, vol.20, pp.1232-1240, 2013.

A. J. Huh and Y. J. Kwon, Nanoantibiotics': a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release Off. J. Control. Release Soc, vol.156, pp.128-145, 2011.

. Casfm/eucast, Guidance documents. Société Française de Microbiologie, 2019.