R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, Optical coherence tomography angiography, Prog. Retin. Eye Res, vol.64, pp.1-55, 2018.

E. Borrelli, D. Sarraf, K. B. Freund, and S. R. Sadda, OCT angiography and evaluation of the choroid and choroidal vascular disorders, Prog. Retin. Eye Res, vol.67, pp.30-55, 2018.

A. Couturier, Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography, Retina Phila. Pa, vol.35, pp.2384-2391, 2015.

Q. Zhang, Wide-field optical coherence tomography based microangiography for retinal imaging, Sci. Rep, vol.6, p.22017, 2016.

T. S. Hwang, Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy, JAMA Ophthalmol, vol.134, pp.1411-1419, 2016.

M. Eastline, Repeatability of Wide-field Optical Coherence Tomography Angiography in Normal Retina, Transl. Vis. Sci. Technol, vol.8, 2019.

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders, PloS One, vol.14, p.214892, 2019.

A. Y. Alibhai, Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography, Retina Phila. Pa, 2018.

J. F. Russell, Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography, Am. J. Ophthalmol, 2019.

M. Singer, C. S. Tan, D. Bell, and S. R. Sadda, Area of peripheral retinal nonperfusion and treatment response in branch and central retinal vein occlusion, Retina Phila. Pa, vol.34, pp.1736-1742, 2014.

K. Wang, Ultra-Wide-Field Fluorescein Angiography-Guided Normalization of Ischemic Index Calculation in Eyes With Retinal Vein Occlusion, Invest. Ophthalmol. Vis. Sci, vol.59, pp.3278-3285, 2018.

F. L. Ferris, The importance of peripheral diabetic retinopathy, Ophthalmology, vol.122, pp.869-870, 2015.

T. L. Torp, R. Kawasaki, T. Y. Wong, T. Peto, and J. Grauslund, Peripheral capillary non-perfusion in treatment-naïve proliferative diabetic retinopathy associates with postoperative disease activity 6 months after panretinal photocoagulation, Br. J. Ophthalmol, vol.103, pp.816-820, 2019.

A. Couturier, Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor, Ophthalmology, 2019.

C. Lavia, Vessel Density Of Superficial, Intermediate, And Deep Capillary Plexuses Using Optical Coherence Tomography Angiography, Retina Phila. Pa, vol.39, pp.247-258, 2019.

D. Fang, F. Y. Tang, H. Huang, C. Y. Cheung, H. Chen et al., interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects, Br. J. Ophthalmol, vol.103, pp.415-420, 2019.

L. R. De-pretto, Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area, Sci. Rep, vol.9, p.9096, 2019.

Q. Zhang, Ultra-wide optical coherence tomography angiography in diabetic retinopathy, Quant. Imaging Med. Surg, vol.8, pp.743-753, 2018.

S. L. The-retina and . Polyak, , pp.191-221, 1941.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography, J. Biomed. Opt, vol.15, p.26011, 2010.

J. P. Campbell, Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography, Sci. Rep, vol.7, p.42201, 2017.

M. Zhang, Projection-resolved optical coherence tomographic angiography, Biomed. Opt. Express, vol.7, pp.816-828, 2016.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, Distinct Retinal Capillary Plexuses in Normal Eyes as Observed in Optical Coherence Tomography Angiography Axial Profile, Analysis. Sci. Rep, vol.8, p.9380, 2018.

C. A. Curcio and K. A. Allen, Topography of ganglion cells in human retina, J. Comp. Neurol, vol.300, pp.5-25, 1990.

N. Quinn, The clinical relevance of visualising the peripheral retina, Prog. Retin. Eye Res, vol.68, pp.83-109, 2019.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, Human photoreceptor topography, J. Comp. Neurol, vol.292, pp.497-523, 1990.

T. Zhang, Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy, Am. J. Ophthalmol, vol.160, 2015.

R. A. Linsenmeier and H. F. Zhang, Retinal Oxygen: from animals to humans, Prog. Retin. Eye Res, vol.58, pp.115-151, 2017.

P. L. Nesper, F. Scarinci, and A. A. Fawzi, Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia, PloS One, vol.12, p.169926, 2017.

T. Niki, K. Muraoka, and K. Shimizu, Distribution of capillary nonperfusion in early-stage diabetic retinopathy, Ophthalmology, vol.91, pp.1431-1439, 1984.

K. Shimizu, Y. Kobayashi, and K. Muraoka, Midperipheral fundus involvement in diabetic retinopathy, Ophthalmology, vol.88, pp.601-612, 1981.

P. S. Silva, Diabetic Retinopathy Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography, Ophthalmology, vol.122, pp.2465-2472, 2015.