S. Yamanaka, Elite and stochastic models for induced pluripotent stem cell generation, Nature, vol.460, pp.49-52, 2009.

Y. Shi, H. Inoue, J. C. Wu, and S. Yamanaka, Induced pluripotent stem cell technology: A decade of progress, Nat. Rev. Drug Discov, vol.16, pp.115-145, 2017.

T. M. Schlaeger, A comparison of non-integrating reprogramming methods, Nat. Biotechnol, vol.33, pp.58-63, 2015.

J. Wu, Stem cells and interspecies chimaeras, Nature, vol.540, pp.51-59, 2016.

U. Ben-david and N. Benvenisty, The tumorigenicity of human embryonic and induced pluripotent stem cells, Nat. Rev. Cancer, vol.11, pp.268-77, 2011.

Y. Yoshida and S. Yamanaka, Induced pluripotent stem cells 10 years later: For cardiac applications, Circ. Res, vol.120, pp.1958-68, 2017.

C. J. Parr, S. Yamanaka, and H. Saito, An update on stem cell biology and engineering for brain development, Mol. Psychiatry, vol.22, pp.808-827, 2017.

I. J. Fox, Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease, Science, vol.345, p.1247391, 2014.

A. Moretti, Patient-specific induced pluripotent stem-cell models for long-qt syndrome, N. Engl. J. Med, vol.363, pp.1397-409, 2010.

A. D. Panopoulos, The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming, Cell Res, vol.22, pp.168-77, 2012.

O. Yanes, Metabolic oxidation regulates embryonic stem cell differentiation, Nat. Chem. Biol, vol.6, pp.411-418, 2010.

A. Moussaieff, Glycolysis-mediated changes in acetyl-coa and histone acetylation control the early differentiation of embryonic stem cells, Cell metab, vol.21, pp.392-402, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01256018

A. Moussaieff, N. M. Kogan, and D. Aberdam, Concise reviews: Energy metabolites: Key mediators of the epigenetic state of pluripotency, Stem Cells, 2015.

B. W. Carey, L. W. Finley, J. R. Cross, C. D. Allis, and C. B. Thompson, Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells, Nature, vol.518, pp.413-419, 2015.

N. Shyh-chang, Influence of threonine metabolism on s-adenosylmethionine and histone methylation, Science, vol.339, pp.222-228, 2013.

C. D. Folmes and A. Terzic, Energy metabolism in the acquisition and maintenance of stemness, Semin. Cell Dev. Biol, vol.52, pp.68-75, 2016.

C. D. Folmes, Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming, Cell metab, vol.14, pp.264-71, 2011.

H. Zhang, Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions, Cell Rep, vol.16, pp.1536-1583, 2016.

N. M. Vacanti and C. M. Metallo, Exploring metabolic pathways that contribute to the stem cell phenotype, Biochim. Biophys. Acta, vol.1830, pp.2361-2370, 2013.

H. J. Lee, Proteomic and metabolomic characterization of a mammalian cellular transition from quiescence to proliferation, Cell Rep, vol.20, pp.721-757, 2017.

P. Liu, Cell-cycle-regulated activation of akt kinase by phosphorylation at its carboxyl terminus, Nature, vol.508, pp.541-546, 2014.

S. Tohyama, Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes, Cell stem cell, vol.12, pp.127-164, 2013.

M. Tomizawa, Survival of primary human hepatocytes and death of induced pluripotent stem cells in media lacking glucose and arginine, PLoS One, vol.8, p.71897, 2013.

A. D-l-angeles, Hallmarks of pluripotency, Nature, vol.525, pp.469-78, 2015.

K. A. Hinds, Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells, Blood, vol.102, pp.867-72, 2003.

K. F. Loewenbruck, Proton mr spectroscopy of neural stem cells: Does the proton-nmr peak at 1.28 ppm function as a biomarker for cell type or state?, Rejuvenation Res, vol.14, pp.371-81, 2011.

L. N. Manganas, Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain, Science, vol.318, pp.980-985, 2007.

H. M. Romanska, Nuclear magnetic resonance detects phosphoinositide 3-kinase/akt-independent traits common to pluripotent murine embryonic stem cells and their malignant counterparts, Neoplasia, vol.11, pp.1301-1309, 2009.

C. Shi, Hrmas 1h-nmr measured changes of the metabolite profile as mesenchymal stem cells differentiate to targeted fat cells in vitro: Implications for non-invasive monitoring of stem cell differentiation in vivo, J. Tissue Eng. Regen. M, vol.2, pp.482-90, 2008.

J. F. Jansen, Stem cell profiling by nuclear magnetic resonance spectroscopy, Magn. Reson. Med, vol.56, pp.666-70, 2006.

R. Sander and P. , Stem cell metabolic and spectroscopic profiling, Trends Biotechnol, vol.31, pp.204-217, 2013.

O. Beckonert, High-resolution magic-angle-spinning nmr spectroscopy for metabolic profiling of intact tissues, Nat. Protoc, vol.5, p.1019, 2010.

B. Sitter, T. F. Bathen, M. Tessem, and I. S. Gribbestad, High-resolution magic angle spinning (hr mas) mr spectroscopy in metabolic characterization of human cancer, Prog. Nucl. Magn. Reson. Spectrosc, vol.54, pp.239-254, 2009.

K. Gambaro, E. Aberdam, T. Virolle, D. Aberdam, and M. Rouleau, Bmp-4 induces a smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors, Cell Death Differ, vol.13, pp.1075-87, 2006.

M. Lipinski, K. Braham, J. M. Caillaud, C. Carlu, and T. Tursz, Hnk-1 antibody detects an antigen expressed on neuroectodermal cells, J. Exp. Med, vol.158, pp.1775-80, 1983.

D. S. Wishart, Hmdb 4.0: The human metabolome database for 2018, Nucleic Acids Res, vol.46, pp.608-617, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01712873

B. J. Blaise, Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics, Anal. Chem, vol.81, pp.6242-6251, 2009.

P. Dahan, V. Lu, R. M. Nguyen, S. A. Kennedy, and M. A. Teitell, Metabolism in pluripotency: Both driver and passenger?, J. Biol. Chem, 2018.

N. Shyh-chang, G. Q. Daley, and L. C. Cantley, Stem cell metabolism in tissue development and aging, Development, vol.140, pp.2535-2582, 2013.

C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre, and A. J. Dickson, Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling, Nat. Protoc, vol.6, pp.1241-1250, 2011.

B. Madji-hounoum, Analytical methodology for metabolomics study of adherent mammalian cells using nmr, gc-ms and lchrms, Anal. Bioanal. Chem, vol.407, pp.8861-72, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01826394

J. A. Kirwan, Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white paper, community perspective (for "precision medicine and pharmacometabolomics task group"-the metabolomics society initiative), Clin. Chem, vol.64, pp.1158-82, 2018.

D. Y. Lee, T. Kind, Y. R. Yoon, O. Fiehn, and K. H. Liu, Comparative evaluation of extraction methods for simultaneous massspectrometric analysis of complex lipids and primary metabolites from human blood plasma, Anal. Bioanal. Chem, vol.406, pp.7275-86, 2014.

I. Duarte, Analytical approaches toward successful human cell metabolome studies by nmr spectroscopy, Anal. Chem, vol.81, pp.5023-5032, 2009.

J. W. Locasale and . Serine, glycine and one-carbon units: Cancer metabolism in full circle, Nat. Rev. Cancer, vol.13, pp.572-83, 2013.

T. Boroviak, R. Loos, P. Bertone, A. Smith, and J. Nichols, The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification, Nat. Cell Biol, vol.16, pp.516-544, 2014.

H. G. Leitch, Naive pluripotency is associated with global DNA hypomethylation, Nat. Struct. Mol. Biol, vol.20, pp.311-317, 2013.

K. Sakabe, Z. Wang, and G. W. Hart, ?-n-acetylglucosamine (o-glcnac) is part of the histone code, Proc. Natl. Acad. Sci. USA, vol.107, pp.19915-19935, 2010.

R. Katz-brull, D. Seger, D. Rivenson-segal, E. Rushkin, and H. Degani, Metabolic markers of breast cancer: Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis, Cancer Res, vol.62, pp.1966-70, 2002.

J. M. Washington, L-proline induces differentiation of es cells: A novel role for an amino acid in the regulation of pluripotent cells in culture, Am. J. Physiol. Cell Physiol, vol.298, pp.982-92, 2010.

H. Jang, O-glcnac regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network, Cell stem cell, vol.11, pp.62-74, 2012.

C. M. Speakman, Elevated o-glcnac levels activate epigenetically repressed genes and delay mouse esc differentiation without affecting naive to primed cell transition, Stem Cells, vol.32, pp.2605-2620, 2014.