C. D. Allis, M. Caparros, T. Jenuwein, D. Reinberg, M. Lachlan et al., , 2015.

R. Kanwal and S. Gupta, Epigenetic modifications in cancer, Clin. Genet, vol.81, issue.4, pp.303-311, 2012.

P. Mandel and P. Metais, Les acides nucléiques du plasma sanguin chez l'homme, C. R. Seances Soc. Biol. Fil, vol.142, issue.3-4, pp.241-243, 1948.

E. V. Barnett, Detection of nuclear antigens (DNA) in normal and pathologic human fluids by quantitative complement fixation, Arthritis Rheum, vol.11, issue.3, pp.407-417, 1968.

G. L. Davis and J. S. Davis, Detection of circulating DNA by counterimmunoelectrophoresis (CIE), Arthritis Rheum, vol.16, issue.1, pp.52-58, 1973.

A. Chan, R. Chiu, and Y. Lo, Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis, Ann. Clin. Biochem, vol.40, issue.2, pp.122-130, 2003.

M. Fleischhacker and B. Schmidt, Circulating nucleic acids (CNAs) and cancer -a survey, Biochim. Biophys. Acta BBA Rev. Cancer, vol.1775, issue.1, pp.181-232, 2007.

J. Moss, J. Magenheim, and D. Neiman, Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease, Nat. Commun, vol.9, issue.1, p.5068, 2018.

P. Anker, M. Stroun, and P. A. Maurice, Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system, Cancer Res, vol.35, issue.9, pp.2375-2382, 1975.

J. C. Rogers, D. Boldt, S. Kornfeld, A. Skinner, and C. R. Valeri, Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen, Proc. Natl Acad. Sci. USA, vol.69, issue.7, pp.1685-1689, 1972.

X. Han, J. Wang, and Y. Sun, Circulating tumor DNA as biomarkers for cancer detection, Genomics Proteomics Bioinformatics, vol.15, issue.2, pp.59-72, 2017.

R. Duforestel, . Briand, and . Bougras-cartron,

Y. M. Lo, N. Corbetta, and P. F. Chamberlain, Presence of fetal DNA in maternal plasma and serum, Lancet, vol.350, issue.9076, pp.485-487, 1997.

E. M. Rodrigues-filho, D. Simon, and N. Ikuta, Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury, J. Neurotrauma, vol.31, pp.1639-1646, 2014.

J. I. Borissoff, I. A. Joosen, and M. O. Versteylen, Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state, Arterioscler. Thromb. Vasc. Biol, vol.33, issue.8, pp.2032-2040, 2013.

E. M. Hummel, E. Hessas, and S. Müller, Cell-free DNA release under psychosocial and physical stress conditions, Transl. Psychiatry, vol.8, issue.1, p.236, 2018.

R. B. Lanman, S. A. Mortimer, and O. A. Zill, Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA, PLoS ONE, vol.10, issue.10, p.140712, 2015.

Y. I. Elshimali, H. Khaddour, M. Sarkissyan, Y. Wu, and J. V. Vadgama, The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients, Int. J. Mol. Sci, vol.14, issue.9, pp.18925-18958, 2013.

M. Abolhassani, J. Tillotson, and J. Chiao, Characterization of the release of DNA by a human leukemia-cell line hl-60, Int. J. Oncol, vol.4, issue.2, pp.417-421, 1994.

M. Stroun, J. Lyautey, C. Lederrey, A. Olson-sand, and P. Anker, About the possible origin and mechanism of circulating DNA apoptosis and active DNA release, Clin. Chim. Acta Int. J. Clin. Chem, vol.313, issue.1-2, pp.139-142, 2001.

A. J. Bronkhorst, J. F. Wentzel, J. Aucamp, E. Van-dyk, L. Du-plessis et al., Characterization of the cell-free DNA released by cultured cancer cells, Biochim. Biophys. Acta BBA Mol. Cell Res, vol.1863, issue.1, pp.157-165, 2016.

S. Jahr, H. Hentze, and S. Englisch, DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells, Cancer Res, vol.61, issue.4, pp.1659-1665, 2001.

S. Holdenrieder, Cell-free DNA in serum and plasma: comparison of ELISA and quantitative PCR, Clin. Chem, vol.51, issue.8, pp.1544-1546, 2005.

M. W. Snyder, M. Kircher, A. J. Hill, R. M. Daza, and J. Shendure, Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin, Cell, vol.164, issue.1-2, pp.57-68, 2016.

S. N. Tamkovich, Circulating nucleic acids in blood of healthy male and female donors, Clin. Chem, vol.51, issue.7, pp.1317-1319, 2005.

J. Kaiser, Keeping tabs on tumor DNA, Science, vol.327, issue.5969, pp.1074-1074, 2010.

J. Wan, C. Massie, and J. Garcia-corbacho, Liquid biopsies come of age: towards implementation of circulating tumour DNA, Nat. Rev. Cancer, vol.17, p.223, 2017.

F. Diehl, M. Li, and D. Dressman, Detection and quantification of mutations in the plasma of patients with colorectal tumors, Proc. Natl Acad. Sci. USA, vol.102, issue.45, pp.16368-16373, 2005.

C. Bettegowda, M. Sausen, and R. J. Leary, Detection of circulating tumor DNA in early-and late-stage human malignancies, Sci. Transl. Med, vol.6, issue.224, pp.224-248, 2014.

A. A. Kamat, F. Z. Bischoff, and D. Dang, Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma, Cancer Biol. Ther, vol.5, issue.10, pp.1369-1374, 2006.

P. Jiang and Y. Lo, The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics, Trends Genet, vol.32, issue.6, pp.360-371, 2016.

H. R. Underhill, J. O. Kitzman, and S. Hellwig, Fragment length of circulating tumor DNA, PLoS Genet, vol.12, issue.7, p.1006162, 2016.

S. Cristiano, A. Leal, and J. Phallen, Genome-wide cell-free DNA fragmentation in patients with cancer, Nature, vol.570, issue.7761, pp.385-389, 2019.

D. Kwapisz, Is it a new era of mutation testing for non-small cell lung cancer?, Ann. Transl. Med, vol.5, issue.3, p.46, 2017.

A. D. Choudhury, L. Werner, and E. Francini, Tumor fraction in cell-free DNA as a biomarker in prostate cancer, JCI Insight, 2018.

H. Li, C. Jing, and J. Wu, Circulating tumor DNA detection: a potential tool for colorectal cancer management (Review), Oncol. Lett, 2018.

L. Lin, C. Kao, S. Cheng, H. Liu, and C. , Increased plasma circulating cell-free DNA could be a potential marker for oral cancer, Int. J. Mol. Sci, vol.19, issue.11, p.3303, 2018.

C. Montagut, J. Vidal, and L. Visa, KRAS mutations in ctDNA: a promising new biomarker in advanced pancreatic cancer, Ann. Oncol, vol.29, issue.12, pp.2280-2282, 2018.

M. Panagopoulou, M. Karaglani, and I. Balgkouranidou, Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers, Oncogene, 2019.

R. B. Corcoran and B. A. Chabner, Application of cell-free DNA analysis to cancer treatment, N. Engl. J. Med, vol.379, issue.18, pp.1754-1765, 2018.

P. A. Jones and S. B. Baylin, The epigenomics of cancer. Cell, vol.128, issue.4, pp.683-692, 2007.

W. Gai and K. Sun, Epigenetic biomarkers in cell-free DNA and applications in liquid biopsy, Genes, vol.10, issue.1, p.32, 2019.

R. Lehmann-werman, D. Neiman, and H. Zemmour, Identification of tissue-specific cell death using methylation patterns of circulating DNA, Proc. Natl Acad. Sci. USA, vol.113, issue.13, pp.1826-1834, 2016.

S. Y. Shen, R. Singhania, and G. Fehringer, Sensitive tumour detection and classification using plasma cell-free DNA methylomes, Nature, vol.563, issue.7732, pp.579-583, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974928

K. Sun, P. Jiang, and K. Chan, Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments, Proc. Natl Acad. Sci. USA, vol.112, issue.40, pp.5503-5512, 2015.

J. Moss, J. Magenheim, and D. Neiman, Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease, Nat. Commun, vol.9, issue.1, p.5068, 2018.

K. Tóth, O. Galamb, and S. Spisák, The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer, Pathol. Oncol. Res, vol.17, issue.3, pp.503-509, 2011.

S. R. Payne, From discovery to the clinic: the novel DNA methylation biomarker m SEPT9 for the detection of colorectal cancer in blood, Epigenomics, vol.2, issue.4, pp.575-585, 2010.

Y. Wang, P. Chen, and R. Liu, Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection, World J. Gastrointest. Oncol, vol.10, issue.1, pp.15-22, 2018.

L. Cai, S. Hood, and E. Kallam, Epi proColon R : use of a non-invasive SEPT9 gene methylation blood test for colorectal cancer screening: a national laboratory experience, J. Clin. Epigenetics, 2018.

N. T. Potter, P. Hurban, and M. N. White, Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma, Clin. Chem, vol.60, issue.9, pp.1183-1191, 2014.

B. Fu, P. Yan, and S. Zhang, Cell-free circulating methylated SEPT9 for noninvasive diagnosis and monitoring of colorectal cancer, Dis. Markers, pp.1-11, 2018.

L. Song, S. Guo, and J. Wang, The blood mSEPT9 is capable of assessing the surgical therapeutic effect and the prognosis of colorectal cancer, Biomark. Med, vol.12, issue.9, pp.961-973, 2018.

R. Xu, W. Wei, and M. Krawczyk, Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma, Nat. Mater, vol.16, p.1155, 2017.

M. Widschwendter, M. Zikan, and B. Wahl, The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer, Genome Med, vol.9, issue.1, 2017.

,

M. Rohanizadegan, Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker, Cancer Genet, pp.159-168, 2018.

K. Mundbjerg, S. Chopra, and M. Alemozaffar, Identifying aggressive prostate cancer foci using a DNA methylation classifier, Genome Biol, 2017.

R. D. Kornberg, Chromatin structure: a repeating unit of histones and DNA, Science, vol.184, issue.4139, pp.868-871, 1974.

J. Bednar, R. A. Horowitz, and S. A. Grigoryev, Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin, Proc. Natl Acad. Sci. USA, vol.95, issue.24, pp.14173-14178, 1998.

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8Å resolution, Nature, vol.389, issue.6648, pp.251-260, 1997.

R. T. Simpson, Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones, Biochemistry, vol.17, issue.25, pp.5524-5531, 1978.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, issue.3, pp.381-395, 2011.

G. E. Zentner and S. Henikoff, Regulation of nucleosome dynamics by histone modifications, Nat. Struct. Amp Mol. Biol, vol.20, p.259, 2013.

R. J. Sims, R. Belotserkovskaya, and D. Reinberg, Elongation by RNA polymerase II: the short and long of it, Genes Dev, vol.18, issue.20, pp.2437-2468, 2004.

P. Tessarz and T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics, Nat. Rev. Mol. Cell Biol, vol.15, issue.11, pp.703-708, 2014.

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.403, issue.6765, pp.41-45, 2000.

Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber et al., A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome, Science, vol.332, issue.6032, pp.977-980, 2011.

D. Huertas, R. Sendra, and P. Muñoz, Chromatin dynamics coupled to DNA repair, Epigenetics, vol.4, issue.1, pp.31-42, 2009.

M. Jezek and E. M. Green, Histone modifications and the maintenance of telomere integrity, Cells, vol.8, issue.2, p.199, 2019.

A. Portela and M. Esteller, Epigenetic modifications and human disease, Nat. Biotechnol, vol.28, issue.10, pp.1057-1068, 2010.

M. F. Fraga, E. Ballestar, and A. Villar-garea, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat. Genet, vol.37, issue.4, p.391, 2005.

R. Duforestel, . Briand, and . Bougras-cartron,

J. A. Fahrner, S. Eguchi, J. G. Herman, and S. B. Baylin, Dependence of histone modifications and gene expression on DNA hypermethylation in cancer, Cancer Res, vol.62, issue.24, pp.7213-7218, 2002.

Y. Kondo, L. Shen, and S. Suzuki, Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas, Hepatol. Res, vol.37, issue.11, pp.974-983, 2007.

R. J. Wozniak, W. T. Klimecki, S. S. Lau, Y. Feinstein, and B. W. Futscher, 5-Aza-2 -deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation, Oncogene, vol.26, issue.1, pp.77-90, 2007.

A. V. Paschall, D. Yang, and C. Lu, H3K9 trimethylation silences Fas expression to confer colon carcinoma immune escape and 5-fluorouracil chemoresistance, J. Immunol, vol.195, issue.4, pp.1868-1882, 2015.

G. Millan-zambrano, H. Santos-rosa, F. Puddu, S. C. Robson, S. P. Jackson et al., Phosphorylation of histone H4T80 triggers DNA damage checkpoint recovery, Mol. Cell, vol.72, issue.4, 2018.

M. Seibert, M. Krüger, and N. A. Watson, CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation, J. Cell Biol, vol.218, issue.4, pp.1164-1181, 2019.

Y. Liu, Y. Long, and S. Wang, JMJD6 regulates histone H2A. X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity, Oncogene, vol.38, issue.7, pp.980-997, 2019.

K. Mahajan, P. Malla, and L. Hr, ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer, Cancer Cell, vol.31, issue.6, 2017.

W. Yang, Y. Xia, and D. Hawke, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis, Cell, vol.150, issue.4, pp.685-696, 2012.

S. Yoon and G. H. Eom, HDAC and HDAC inhibitor: from cancer to cardiovascular diseases, Chonnam Med. J, vol.52, issue.1, pp.1-11, 2016.

W. Sun, S. Lv, H. Li, W. Cui, and L. Wang, Enhancing the anticancer efficacy of immunotherapy through combination with histone modification inhibitors, Genes, 2018.

N. Karachaliou, C. Mayo-de-las-casas, M. A. Molina-vila, and R. Rosell, Real-time liquid biopsies become a reality in cancer treatment, Ann. Transl. Med, 2015.

M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu et al., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD, Nature, vol.391, issue.6662, pp.43-50, 1998.

S. Holdenrieder, Y. Dharuman, and J. Standop, Novel serum nucleosomics biomarkers for the detection of colorectal cancer, Anticancer Res, vol.34, issue.5, pp.2357-2362, 2014.

J. Xu, X. Zhang, and R. Pelayo, Extracellular histones are major mediators of death in sepsis, Nat. Med, vol.15, issue.11, pp.1318-1321, 2009.

R. Allam, S. Kumar, M. N. Darisipudi, and H. Anders, Extracellular histones in tissue injury and inflammation, J. Mol. Med. Berl. Ger, vol.92, issue.5, pp.465-472, 2014.

R. Chen, R. Kang, X. Fan, and D. Tang, Release and activity of histone in diseases, Cell Death Dis, vol.5, issue.8, p.1370, 2014.

K. Kuroi, C. Tanaka, and M. Toi, Plasma nucleosome levels in node-negative breast cancer patients, Breast Cancer, vol.6, issue.4, pp.361-364, 1999.

S. Holdenrieder, P. Stieber, and H. Bodenmüller, Circulating nucleosomes in serum, Ann. NY Acad. Sci, vol.945, issue.1, pp.93-102, 2006.

M. E. Kutcher, J. Xu, R. F. Vilardi, C. Ho, C. T. Esmon et al., Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C, J. Trauma Acute Care Surg, vol.73, issue.6, pp.1389-1394, 2012.

J. Rahier, A. Druez, and L. Faugeras, Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer, Clin. Epigenetics, vol.9, issue.53, 2017.

L. Rasmussen, I. J. Christensen, M. Herzog, J. Micallef, and H. J. Nielsen, For the Danish Collaborative Group on EA. Circulating cell-free nucleosomes as biomarkers for early detection of colorectal cancer. Circulating cell-free nucleosomes as biomarkers for early detection of colorectal cancer, Oncotarget, vol.9, issue.12, pp.10247-10258, 2017.

S. Holdenrieder and P. Stieber, Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.10, pp.5981-5987, 2004.

Y. N. Fahmueller, D. Nagel, and R. Hoffmann, Predictive and prognostic value of circulating nucleosomes and serum biomarkers in patients with metastasized colorectal cancer undergoing selective internal radiation therapy, BMC Cancer, vol.12, p.5, 2012.

O. J. Stoetzer, D. Fersching, and C. Salat, Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating apoptotic biomarkers nucleosomes, DNAse, cytokeratin-18 fragments and survivin, Cancer Lett, vol.336, issue.1, pp.140-148, 2013.

K. Messaoudi, A. Clavreul, and F. Lagarce, Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide, Drug Discov. Today, vol.20, issue.7, pp.899-905, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392441

M. Maleszewska and B. Kaminska, Is glioblastoma an epigenetic malignancy, Cancers, vol.5, issue.4, pp.1120-1139, 2013.

R. Pacaud, M. Cheray, A. Nadaradjane, F. M. Vallette, and P. Cartron, Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy, vol.5, pp.12-22, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820696

. Encode-project-consortium, E. Birney, and J. A. Stamatoyannopoulos, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, vol.447, issue.7146, pp.799-816, 2007.

J. D. Ransohoff, Y. Wei, and P. A. Khavari, The functions and unique features of long intergenic non-coding RNA, Nat. Rev. Mol. Cell Biol, vol.19, issue.3, pp.143-157, 2018.

D. Bach, S. K. Lee, and A. K. Sood, Circular RNAs in cancer, Mol. Ther. Nucleic Acids, vol.16, pp.118-129, 2019.

M. Esteller, Non-coding RNAs in human disease, Nat. Rev. Genet, vol.12, issue.12, pp.861-874, 2011.

L. S. Enache, E. L. Enache, and C. Ramière, Circulating RNA molecules as biomarkers in liver disease, Int. J. Mol. Sci, vol.15, issue.10, pp.17644-17666, 2014.

A. Turchinovich and B. Burwinkel, Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma, RNA Biol, vol.9, issue.8, pp.1066-1075, 2012.

S. U. Umu, H. Langseth, and C. Bucher-johannessen, A comprehensive profile of circulating RNAs in human serum, RNA Biol, vol.15, issue.2, pp.242-250, 2018.

H. M. Heneghan, N. Miller, and M. J. Kerin, Circulating microRNAs: promising breast cancer Biomarkers, Breast Cancer Res. BCR, vol.13, issue.1, p.403, 2011.

R. Butova, P. Vychytilova-faltejskova, A. Souckova, S. Sevcikova, and R. Hajek, Long non-coding RNAs in multiple myeloma, Non-Coding RNA, vol.5, issue.1, 2019.

W. R. Jeck and N. E. Sharpless, Detecting and characterizing circular RNAs, Nat. Biotechnol, vol.32, issue.5, pp.453-461, 2014.

X. Hu, J. Bao, and Z. Wang, The plasma lncRNA acting as fingerprint in non-small-cell lung cancer, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med, vol.37, issue.3, pp.3497-3504, 2016.

T. Masuda, N. Hayashi, Y. Kuroda, S. Ito, H. Eguchi et al., MicroRNAs as biomarkers in colorectal cancer, Cancers, vol.9, issue.9, p.124, 2017.

X. Wang and L. Fang, Advances in circular RNAs and their roles in breast cancer, J. Exp. Clin. Cancer Res. CR, vol.37, issue.1, p.206, 2018.

H. Peng, J. Wang, and J. Li, A circulating non-coding RNA panel as an early detection predictor of non-small cell lung cancer, Life Sci, vol.151, pp.235-242, 2016.

A. El-tawdi, M. Matboli, and H. H. Shehata, Evaluation of circulatory RNA-based biomarker panel in hepatocellular carcinoma, Mol. Diagn. Ther, vol.20, issue.3, pp.265-277, 2016.

S. Huang, Q. Luo, and H. Peng, A panel of serum noncoding RNAs for the diagnosis and monitoring of response to therapy in patients with breast cancer, Med. Sci. Monit. Int. Med. J. Exp. Clin. Res, vol.24, pp.2476-2488, 2018.

A. Nadaradjane, J. Briand, and G. Bougras-cartron, miR-370-3p is a therapeutic tool in anti-glioblastoma therapy but is not an intratumoral or cell-free circulating biomarker, Mol. Ther. -Nucleic Acids, vol.13, pp.642-650, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01982015

S. B. Baylin and J. E. Ohm, Epigenetic gene silencing in cancer -a mechanism for early oncogenic pathway addiction?, Nat. Rev. Cancer, vol.6, issue.2, pp.107-116, 2006.

J. Füllgrabe, E. Kavanagh, and B. Joseph, Histone onco-modifications, Oncogene, vol.30, issue.31, pp.3391-3403, 2011.

C. Fiala and E. P. Diamandis, Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection, BMC Med, 2018.

B. Pardini, A. A. Sabo, G. Birolo, and G. A. Calin, Noncoding RNAs in extracellular fluids as cancer biomarkers: The new frontier of liquid biopsies, Cancers, vol.11, issue.8, p.1170, 2019.

P. Mcanena, J. Brown, and M. J. Kerin, Circulating nucleosomes and nucleosome modifications as biomarkers in cancer, Cancers, vol.9, issue.1, p.5, 2017.

R. G. Dumitrescu, Early epigenetic markers for precision medicine, Cancer Epigenetics for Precision Medicine. Verma M, pp.3-17, 2018.

Y. E. , Cancer biomarkers: written in blood, Nature, vol.511, issue.7511, pp.524-526, 2014.