, CAS 2017 Castor-customizable and advanced software for tomographic reconstruction

E. Clementel, P. Mollet, and S. Vandenberghe, Effect of local TOF Kernel miscalibrations on contrast-noise in TOF PET, IEEE Trans. Nucl. Sci, vol.60, pp.1578-88, 2013.

M. Daube-witherspoon, S. Surti, S. Matej, M. Werner, J. S. Karp et al., flight Kernel accuracy in TOF-PET reconstruction IEEE Nuclear Science Symp. Conf. Record, vol.3, pp.1723-1730, 2006.

C. Groiselle and S. Glick, 3D PET list-mode iterative reconstruction using time-of-flight information IEEE Symp. Conf. Record Nuclear Science, vol.4, pp.2633-2641, 2004.

D. Haynor, R. Harrison, and T. Lewellen, A scheme for accidental coincidence correction in time-of-flight positron tomography: theory and implementation, IEEE Trans. Nucl. Sci, vol.35, pp.753-759, 1988.

C. Levin, S. Maramraju, M. Khalighi, T. Deller, D. et al., Design features and mutual compatibility studies of the time-of-flight pet capable ge signa PET/MR system, IEEE Trans. Med. Imaging, vol.35, pp.1907-1921, 2016.

C. Lois, B. Jakoby, M. Long, K. Hubner, D. Barker et al., An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging, J. Nucl. Med, vol.51, pp.237-282, 2010.

S. Matej, S. Surti, S. Jayanthi, M. Daube-witherspoon, R. Lewitt et al., Efficient 3D TOF PET reconstruction using viewgrouped histo-images: direct-direct image reconstruction for TOF, IEEE Trans. Med. Imaging, vol.28, pp.739-51, 2009.

A. Mehranian, F. Kotasidis, and H. Zaidi, Accelerated time-of-flight (TOF) PET image reconstruction using TOF bin subsetization and TOF weighting matrix pre-computation, Phys. Med. Biol, vol.61, p.1309, 2016.

T. Merlin, S. Stute, D. Benoit, J. Bert, T. Carlier et al., Castor: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction, Phys. Med. Biol, vol.63, p.185005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935073

H. Schöder, Y. Erdi, K. Chao, M. Gonen, S. Larson et al., Clinical implications of different image reconstruction parameters for interpretation of whole-body pet studies in cancer patients, J. Nucl. Med, vol.45, pp.559-66, 2004.

D. Snyder and D. Politte, Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements, IEEE Trans. Nucl. Sci, vol.30, pp.1843-1852, 1983.

D. Snyder, M. Miller, L. Thomas, and D. Politte, Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography, IEEE Trans. Med. Imaging, vol.6, pp.228-266, 1987.

S. Stute and C. Comtat, Practical considerations for image-based PSF and blobs reconstruction in PET, Phys. Med. Biol, vol.58, pp.3849-70, 2013.

W. Wang, Systematic and distributed time-of-flight list mode PET reconstruction IEEE Nuclear Science Symp, Conf. Record, vol.3, pp.1715-1737, 2006.

C. Watson, Extension of single scatter simulation to scatter correction of time-of-flight PET, IEEE Trans. Nucl. Sci, vol.54, pp.1679-86, 2007.

M. Werner, S. S. Karp, and J. , Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling, IEEE Nuclear Science Symp. Conf. Record, vol.3, pp.1768-73, 2006.

X. Zhang, J. Zhou, S. Cherry, R. Badawi, and J. Qi, Quantitative image reconstruction for total-body PET imaging using the 2 m long EXPLORER scanner, Phys. Med. Biol, vol.62, pp.2465-85, 2017.