H. Döhner, D. J. Weisdorf, and C. D. Bloomfield, Acute myeloid leukemia, N. Engl. J. Med, vol.373, pp.1136-52, 2015.

E. Papaemmanuil, Genomic Classification and Prognosis in Acute Myeloid Leukemia, N. Engl. J. Med, vol.374, pp.2209-2221, 2016.

N. Daver, R. F. Schlenk, N. H. Russell, and M. J. Levis, Targeting FLT3 mutations in AML: review of current knowledge and evidence, Leukemia, vol.33, pp.299-312, 2019.

R. M. Stone, Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation, N. Engl. J. Med, vol.377, pp.454-464, 2017.

J. E. Cortes, Efficacy and Safety of Single-Agent Quizartinib (Q), a Potent and Selective FLT3 Inhibitor (FLT3i), in Patients (pts) with FLT3-Internal Tandem Duplication (FLT3-ITD)-Mutated Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) Enrolled in the Global, Phase 3, Randomized Controlled Quantum-R Trial, Blood, vol.132, p.563, 2018.

M. Grundy, Predicting effective pro-apoptotic anti-leukaemic drug combinations using co-operative dynamic BH3 profiling, PLoS One, vol.13, p.19068, 2018.

S. Bertoli, CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia, Oncotarget, vol.6, pp.38061-38078, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594827

R. Boutros, V. Lobjois, and B. Ducommun, CDC25 phosphatases in cancer cells: key players? Good targets?, Nat. Rev. Cancer, vol.7, pp.495-507, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00317350

A. Fernandez-vidal, Cell adhesion regulates CDC25A expression and proliferation in acute myeloid leukemia, Cancer Res, vol.66, pp.7128-7163, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00317379

A. Fernandez-vidal, Upregulation of the CDC25A phosphatase down-stream of the NPM/ALK oncogene participates to anaplastic large cell lymphoma enhanced proliferation, Cell Cycle, vol.8, pp.1373-1382, 2009.

E. F. Gautier, The cell cycle regulator CDC25A is a target for JAK2V617F oncogene, Blood, vol.119, pp.1190-1199, 2012.

A. Fernandez-vidal, A. Mazars, and S. Manenti, CDC25A: a rebel within the CDC25 phosphatases family?, Anticancer Agents Med. Chem, vol.8, pp.825-831, 2008.

D. Ray and H. Kiyokawa, CDC25A phosphatase: a rate-limiting oncogene that determines genomic stability, Cancer Res, vol.68, pp.1251-1254, 2008.

J. Pothof, MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response, EMBO J, vol.28, issue.14, pp.2090-2099, 2009.

K. T. Kim, MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1, Plos One, vol.7, p.44546, 2012.

C. Larrue, Antileukemic Activity of 2-Deoxy-d-Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with FLT3-ITD or c-KIT Mutations, Mol. Cancer Ther, vol.14, pp.2364-2373, 2015.

Z. Wang, M. Wang, J. S. Lazo, and B. I. Carr, Identification of epidermal growth factor receptor as a target of CDC25A protein phosphatase, J. Biol. Chem, vol.277, pp.19470-19475, 2002.

C. Seedhouse, Impaired S-phase arrest in acute myeloid leukemia cells with a FLT3 internal tandem duplication treated with clofarabine, Clin. Cancer Res, vol.15, pp.7291-7298, 2009.

E. Vigo, CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase, Mol. Cell Biol, vol.19, pp.6379-6395, 1999.

K. Galaktionov, X. Chen, and D. Beach, Cdc25 cell-cycle phosphatase as a target of c-myc, Nature, vol.382, pp.511-517, 1996.

B. Barré, A. Vigneron, and O. Coqueret, The STAT3 transcription factor is a target for the Myc and riboblastoma proteins on the Cdc25Apromoter, J. Biol. Chem, vol.280, pp.15673-15681, 2005.

P. J. Coffer, L. Koenderman, and R. P. De-groot, The role of STATs in myeloid differentiation and leukemia, Oncogene, vol.19, pp.2511-2522, 2000.

K. D. Bunting, STAT5 signaling in normal and pathologic hematopoiesis, Front. Biosci, vol.12, pp.2807-2820, 2007.

A. Rani and J. J. Murphy, STAT5 in Cancer and Immunity, J. Interferon Cytokine Res, vol.36, pp.226-263, 2016.

B. Groner, V. Von-manstein, and . Jak, Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition, Mol. Cell Endocrinol, vol.451, pp.1-14, 2017.

A. Shastri, Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells, J. Clin. Invest, vol.128, pp.5479-5488, 2018.

D. Gerloff, NF-?B/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia, Leukemia, vol.29, pp.535-547, 2015.

A. Nogami, Inhibition of the STAT5/Pim Kinase Axis Enhances Cytotoxic Effects of Proteasome Inhibitors on FLT3-ITD-Positive AML Cells by Cooperatively Inhibiting the mTORC1/4EBP1/S6K/Mcl-1 Pathway, Transl. Oncol, vol.12, pp.336-349, 2019.

B. Wingelhofer, Pharmacologic inhibition of STAT5 in acute myeloid leukemia, Leukemia, vol.32, pp.1135-1146, 2018.

G. Li, STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease, Blood, vol.115, pp.1416-1424, 2010.

T. Liu, Z. Xu, D. Ou, J. Liu, and J. Zhang, The miR-15a/16 gene cluster in human cancer: A systematic review, J. Cell Physiol, vol.234, pp.5496-5506, 2019.

T. Nosaka, STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells, EMBO J, vol.18, pp.4754-4765, 1999.

M. Mizuki, Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations, Blood, vol.101, pp.3164-3173, 2003.

S. Kasar, Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia, Genes Immun, vol.13, pp.109-119, 2012.

G. Cutrona, Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia: implication for therapy, Leukemia, vol.31, pp.1894-1904, 2017.

M. S. Beg, Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors, Invest. New Drugs, vol.35, pp.180-188, 2017.

S. M. Gao, miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid, Leuk. Lymphoma, vol.52, pp.2365-2371, 2011.

H. G. Moon, J. Yang, Y. Zheng, and Y. Jin, miR-15a/16 regulates macrophage phagocytosis after bacterial infection, J. Immunol, vol.193, pp.4558-4567, 2014.

A. Cimmino, miR-15 and miR-16 induce apoptosis by targeting BCL2, Proc. Natl. Acad. Sci. USA, vol.102, pp.13944-13949, 2005.

A. H. Wei, Venetoclax Combined With Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study, J. Clin. Oncol, 2019.

R. Singh-mali, FLT3-ITD Activation Mediates Resistance to the BCL-2 Selective Antagonist, Venetoclax, in FLT3-ITD Mutant AML Models, Blood, vol.130, p.1348, 2017.

H. E. Pelish, Mediator kinase inhibition further activates super-enhancer-associated genes in AML, Nature, vol.526, pp.273-276, 2015.

A. Rascle, J. A. Johnston, and B. Amati, Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5, Mol. Cell Biol, vol.23, pp.4162-4173, 2003.