G. Hajishengallis and R. J. Lamont, Breaking bad: Manipulation of the host response by Porphyromonas gingivalis, Eur. J. Immunol, vol.44, pp.328-338, 2014.

N. J. Kassebaum, Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression, J. Dent. Res, vol.93, pp.1045-1053, 2014.

G. Hajishengallis, Periodontitis: from microbial immune subversion to systemic inflammation, Nat. Rev. Immunol, vol.15, pp.30-44, 2015.

G. J. Linden, A. Lyons, and F. A. Scannapieco, Periodontal systemic associations: review of the evidence, J. Clin. Periodontol, vol.40, pp.8-19, 2014.

O. Huck, R. Elkaim, J. L. Davideau, and H. Tenenbaum, Evaluating periodontal risk for patients at risk of or suffering from atherosclerosis: recent biological hypotheses and therapeutic consequences, Arch. Cardiovasc. Dis, vol.104, pp.352-358, 2011.

P. B. Lockhart, Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association, Circulation, vol.125, pp.2520-2544, 2012.

M. S. Tonetti, Treatment of Periodontitis and Endothelial Function, N. Engl. J. Med, vol.356, pp.911-920, 2007.

N. V. Pothineni, Infections, atherosclerosis, and coronary heart disease, Eur. Heart J, vol.38, pp.3195-3201, 2017.

M. E. Rosenfeld and L. A. Campbell, Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis, Thromb. Haemost, vol.106, pp.858-867, 2011.

L. Salhi, Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review, Angiology, vol.70, pp.479-491, 2019.

F. Xu and B. Lu, Prospective association of periodontal disease with cardiovascular and all-cause mortality: NHANES III follow-up study, Atherosclerosis, vol.218, pp.536-542, 2011.

K. Buhlin, Periodontitis is associated with angiographically verified coronary artery disease, J. Clin. Periodontol, vol.38, issue.11, pp.1007-1021, 2011.

J. M. Liljestrand, Immunologic burden links periodontitis to acute coronary syndrome, Atherosclerosis, vol.268, pp.177-184, 2018.

S. A. Zelkha, R. W. Freilich, and S. Amar, Periodontal innate immune mechanisms relevant to atherosclerosis and obesity, Periodontol, issue.54, pp.207-221, 2000.

R. Elkaïm, Prevalence of periodontal pathogens in subgingival lesions, atherosclerotic plaques and healthy blood vessels: a preliminary study, J. Periodontal Res, vol.43, pp.224-231, 2008.

S. Amar and M. Engelke, Periodontal Innate Immune Mechanisms Relevant to Atherosclerosis, Mol. Oral Microbiol, vol.30, pp.171-185, 2015.

O. Huck, R. Elkaim, J. L. Davideau, and H. Tenenbaum, Porphyromonas gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells, Innate Immun, vol.21, pp.65-72, 2015.

I. M. Bugueno, Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-? Pre-Treated Endothelial Cells, PLoS ONE, vol.11, 2016.

O. Huck, Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection, Infect. Immun, vol.23, issue.3, 2017.

I. M. Bugueno, F. Batool, L. Korah, N. Benkirane-jessel, and O. Huck, Porphyromonas gingivalis Differentially Modulates Apoptosome Apoptotic Peptidase Activating Factor 1 in Epithelial Cells and Fibroblasts, Am. J. Pathol, vol.188, pp.404-416, 2018.

I. M. Velsko, Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis, PloS One, vol.9, p.97811, 2014.

L. Li, E. Messas, E. L. Batista, R. A. Levin, and S. Amar, Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model, Circulation, vol.105, pp.861-867, 2002.

Z. Song, P. Brassard, and J. M. Brophy, A meta-analysis of antibiotic use for the secondary prevention of cardiovascular diseases, Can. J. Cardiol, vol.24, pp.391-395, 2008.

E. Lutgen, D. Atzler, Y. Döring, J. Duchene, and C. Steffens-weber, Immunotherapy for cardiovascular disease, Eur. Heart J, 2019.

P. Welsh, G. Grassia, S. Botha, N. Sattar, and P. Maffia, Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect?, Br. J. Pharmacol, vol.174, pp.3898-3913, 2017.

B. W. Van-tassell, S. Toldo, E. Mezzaroma, and A. Abbate, Targeting Interleukin-1 in Heart Disease, Circulation, vol.128, pp.1910-1923, 2013.

V. C. Ridger, Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology, Thromb. Haemost, vol.117, pp.1296-1316, 2017.

F. Meziani, X. Delabranche, P. Asfar, and F. Toti, Bench-to-bedside review: circulating microparticles-a new player in sepsis?, Crit. Care Lond. Engl, vol.14, p.236, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00666844

O. P. Barry, D. Praticò, R. C. Savani, and G. A. Fitzgeral, Modulation of monocyte-endothelial cell interactions by platelet microparticles, J. Clin. Invest, vol.102, pp.136-144, 1998.

S. F. Mause, V. Hundelshausen, A. Zernecke, R. R. Koene, and C. Weber, Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium, Arterioscler. Thromb. Vasc. Biol, vol.25, pp.1512-1518, 2005.

O. Huck, R. Elkaim, J. L. Davideau, and H. Tenenbaum, Porphyromonas gingivalis and its lipopolysaccharide differentially regulate the expression of cathepsin B in endothelial cells, Mol. Oral Microbiol, vol.27, pp.137-148, 2012.

W. Jy, Measuring circulating cell-derived microparticles, J. Thromb. Haemost, vol.2, pp.1842-1851, 2004.

L. Keller, Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids, Int. J. Nanomedicine, vol.12, pp.447-457, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01483946

A. E. May, Platelet-Leukocyte Interactions in Inflammation and Atherothrombosis, Semin. Thromb. Hemost, vol.33, pp.123-127, 2007.

G. Cimmino and P. Cirillo, Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis, Cardiovasc. Diagn. Ther, vol.8, pp.581-593, 2018.

S. Khemais-benkhiat, The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized Crataegus Extract, J. Gerontol. A. Biol. Sci. Med. Sci, vol.71, pp.1581-1590, 2016.

K. Bhagat, A. D. Hingorani, M. Palacios, I. G. Charles, and P. Vallance, Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS, Cardiovasc. Res, vol.41, pp.754-764, 1999.

D. Burger, Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.1898-1907, 2011.

O. Morel, Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection, J. Heart Lung Transplant, vol.27, pp.38-45, 2008.

B. Bakouboula, Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.177, pp.536-543, 2008.

X. Delabranche, J. Helms, and F. Meziani, Immunohaemostasis: a new view on haemostasis during sepsis, Ann. Intensive Care, vol.7, 2017.

N. Amabile, Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study, Eur. Heart J, vol.35, pp.2972-2979, 2014.

P. E. Rautou, Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration, Circ. Res, vol.108, pp.335-343, 2011.

M. Yin, X. Loyer, and C. M. Boulanger, Extracellular vesicles as new pharmacological targets to treat atherosclerosis, Eur. J. Pharmacol, vol.763, pp.90-103, 2015.

C. M. Boulanger and F. Dignat-george, Microparticles: an introduction, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.2-3, 2011.

M. Mack, Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection, Nat. Med, vol.6, pp.769-775, 2000.

F. W. Lai, B. D. Lichty, and D. M. Bowdish, Microvesicles: ubiquitous contributors to infection and immunity, J. Leukoc. Biol, vol.97, pp.237-245, 2015.

C. Ettelaie, M. E. Collier, N. J. James, and C. Li, Induction of tissue factor expression and release as microparticles in ECV304 cell line by Chlamydia pneumoniae infection, Atherosclerosis, vol.190, pp.343-351, 2007.

A. M. Curtis, p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles, J. Thromb. Haemost, vol.7, pp.701-709, 2009.

P. R. Cooper, L. J. Palmer, and I. L. Chapple, Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe?, Periodontol, issue.63, pp.165-197, 2000.

P. M. Ridker, Anticytokine Agents: Targeting Interleukin Signaling Pathways for the Treatment of Atherothrombosis, Circ. Res, vol.124, pp.437-450, 2019.

P. M. Ridker, Clinician's Guide to Reducing Inflammation to Reduce Atherothrombotic Risk: JACC Review Topic of the Week, J. Am. Coll. Cardiol, vol.72, pp.3320-3331, 2018.

A. S. Leroyer, Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques, J. Am. Coll. Cardiol, vol.49, pp.772-777, 2007.

E. Pfitzner, S. Kliem, D. Baus, and C. M. Litterst, The role of STATs in inflammation and inflammatory diseases, Curr. Pharm. Des, vol.10, pp.2839-2850, 2004.

L. Kocgozlu, R. Elkaim, H. Tenenbaum, and S. Werner, Variable cell responses to P. gingivalis lipopolysaccharide, J. Dent. Res, vol.88, pp.741-745, 2009.

Y. S. Ho, Porphyromonas gingivalis fimbriae-dependent interleukin-6 autocrine regulation by increase of gp130 in endothelial cells, J. Periodontal Res, vol.44, pp.550-556, 2009.

O. Huck, Reduction of Articular and Systemic Inflammation by Kava-241 in Porphyromonas gingivalis-induced Arthritis Murine Model, Infect. Immun, 2018.

S. P. Singh, O. Huck, N. G. Abraham, and S. Amar, Kavain Reduces Porphyromonas gingivalis-Induced Adipocyte Inflammation: Role of PGC-1? Signaling, J. Immunol, vol.201, pp.1491-1499, 2018.

H. Yuan, R. Gupte, S. Zelkh, and S. Amar, Receptor activator of nuclear factor kappa B ligand antagonists inhibit tissue inflammation and bone loss in experimental periodontitis, J. Clin. Periodontol, vol.38, pp.1029-1036, 2011.

M. Wan, J. Liu, and X. Ouyang, Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-?B pathway, J. Periodontal Res, vol.50, pp.189-196, 2015.

, Scientific RepoRtS |, vol.10, 1778.

A. A. Constantinescu, Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis, J. Cyst. Fibros, vol.13, pp.219-226, 2014.

G. K. Hansson, P. Libby, and I. Tabas, Inflammation and plaque vulnerability, J. Intern. Med, vol.278, pp.483-493, 2015.

A. Giannella, Circulating levels and characterization of microparticles in patients with different degrees of glucose tolerance, Cardiovasc. Diabetol, vol.16, p.118, 2017.

A. K. Enjeti, A. Ariyarajah, A. D'crus, M. Seldon, and L. F. Lincz, Circulating microvesicle number, function and small RNA content vary with age, gender, smoking status, lipid and hormone profiles, Thromb. Res, vol.156, pp.65-72, 2017.

X. Loyer, A. C. Vion, A. Tedgui, and C. M. Boulanger, Microvesicles as cell-cell messengers in cardiovascular diseases, Circ. Res, vol.114, pp.345-353, 2014.

S. M. Chiang and H. E. Schellhorn, Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria, Arch. Biochem. Biophys, vol.525, pp.161-169, 2012.

J. Fu, Salmonella proteomics under oxidative stress reveals coordinated regulation of antioxidant defense with iron metabolism and bacterial virulence, J. Proteomics, vol.157, pp.52-58, 2017.

S. B. Farr and T. Kogoma, Oxidative stress responses in Escherichia coli and Salmonella typhimurium, Microbiol. Rev, vol.55, pp.561-585, 1991.

S. Cardaropoli, F. Silvagno, E. Morra, G. P. Pescarmona, and T. Todros, Infectious and inflammatory stimuli decrease endothelial nitric oxide synthase activity in vitro, J. Hypertens, vol.21, pp.2103-2110, 2003.

F. Winkler, U. Koedel, S. Kastenbauer, and H. W. Pfister, Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-brain barrier breakdown, J. Infect. Dis, vol.183, pp.1749-1759, 2001.

M. Abbas, Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways, Circulation, vol.135, pp.280-296, 2017.

K. Jayaprakash, I. Demirel, H. Khalaf, and T. Bengtsson, Porphyromonas gingivalis-induced inflammatory responses in THP1 cells are altered by native and modified low-density lipoproteins in a strain-dependent manner, APMIS, vol.126, pp.667-677, 2018.

P. H. Rodrigues, Porphyromonas gingivalis strain specific interactions with human coronary artery endothelial cells: a comparative study, PLoS One, vol.7, p.52606, 2012.

Y. Madkhali, The Ratio of Factor VIIa:Tissue Factor Content within Microvesicles Determines the, Differential Influence on Endothelial Cells. TH Open, vol.3, pp.132-145, 2019.

J. Pasquier, Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction, Sci Rep, vol.7, p.16450, 2017.