, World Health Organization. Global tuberculosis report, 2017.

M. Kukkonen, S. Saarela, K. Lähteenmäki, U. Hynönen, B. Westerlund-wikström et al., Identification of two laminin-binding fimbriae, the type 1 fimbria of Salmonella enterica serovar typhimurium and the G fimbria of Escherichia coli, as plasminogen receptors, Infect Immun, vol.66, pp.4965-70, 1998.

S. Bergmann, M. Rohde, G. S. Chhatwal, and H. S. , Enolase of Streptococcus pneumoniae is a plasmin(ogen) binding protein displayed on the bacterial cell surface, Mol Microbiol, vol.40, p.1273, 2001.

J. L. Coleman, T. J. Sellati, J. E. Testa, R. R. Kew, M. B. Furie et al., Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers, Infect Immun, vol.63, pp.2478-84, 1995.

M. L. Vieira, M. V. Atzingen, R. Oliveira, R. S. Mendes, R. F. Domingos et al., Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions, J Biomed Biotechnol, 2012.

V. Pancholi and V. A. Fischetti, ?-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci, J Biol Chem, vol.273, pp.14503-14518, 1998.

H. Fuchs, R. Wallich, M. M. Simon, and M. D. Kramer, The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor, Proc Natl Acad Sci, vol.91, pp.12594-12602, 1994.

M. S. Klempner, R. Noring, M. P. Epstein, B. Mccloud, R. Hu et al., Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi, J Infect Dis, vol.171, pp.1258-65, 1995.

L. T. Hu, G. Perides, R. Noring, and M. S. Klempner, Binding of human plasminogen to Borrelia burgdorferi, Infect Immun, vol.63, pp.3491-3497, 1995.

J. Stie and D. Fox, Blood-brain barrier invasion by Cryptococcus neoformans is enhanced by functional interactions with plasmin, Microbiology, vol.158, pp.240-58, 2012.

C. Attali, C. Durmort, T. Vernet, D. Guilmi, and A. M. , The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage, Infect Immun, vol.76, pp.5350-5356, 2008.

B. Singh, T. Al-jubair, C. Voraganti, T. Andersson, O. Mukherjee et al., Moraxella catarrhalis binds plasminogen to evade host innate immunity, Infect Immun, vol.83, pp.3458-69, 2015.

M. C. Chung, J. H. Tonry, A. Narayanan, N. P. Manes, R. S. Mackie et al., Bacillus anthracis interacts with plasmin(ogen) to Evade C3b-dependent innate immunity, PLoS One, vol.6, 2011.

V. Monroy, A. Amador, B. Ruiz, P. Espinoza-cueto, W. Xolalpa et al., Binding and activation of human plasminogen by Mycobacterium tuberculosis, Infect Immun, vol.68, pp.4327-4357, 2000.

W. Xolalpa, A. J. Vallecillo, M. Lara, G. Mendoza-hernandez, M. Comini et al., Identification of novel bacterial plasminogen binding proteins in the human pathogen Mycobacterium tuberculosis, Proteomics, vol.7, pp.3332-3373, 2007.

S. Gordon and Z. A. Cohn, Bacille Calmette-Guerin infection in the mouse. Regulation of macrophage plasminogen activator by T lymphocytes and specific antigen, J Exp Med, vol.147, pp.1175-88, 1978.

M. Schuyler and W. Forman, Alveolar macrophage plasminogen activator, Exp Lung Res, vol.6, pp.159-69, 1984.

E. Rodríguez-flores, J. Campuzano, D. Aguilar, R. Hernández-pando, and C. Espitia, The response of the fibrinolytic system to mycobacteria infection, Tuberculosis, vol.92, p.497, 2012.

X. G. Lu, J. S. Mao, J. F. Tong, L. Zhu, J. Liu et al., Fibrinolytic characteristics and their significance in malignant, tuberculous and cirrhotic pleural and ascitic fluids, Int J Lab Hematol, vol.29, p.132, 2007.

J. Eugen-olsen, P. Gustafson, N. Sidenius, T. K. Fischer, J. Parner et al., The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: a community study from Guinea-Bissau, Int J Tuberc Lung Dis, vol.6, pp.686-92, 2002.

F. Rudolf, A. J. Wagner, F. M. Back, V. F. Gomes, P. Aaby et al., Tuberculosis case finding and mortality prediction: added value of the clinical TBscore and biomarker suPAR, Int J Tuberc Lung Dis, vol.21, pp.67-72, 2017.

J. Sato, J. Schorey, V. A. Ploplis, E. Haalboom, L. Krahule et al., The fibrinolytic system in dissemination and matrix protein deposition during a mycobacterium infection, Am J Pathol, vol.163, issue.10, pp.63680-63682, 2003.

M. Silva-miranda, E. Ekaza, A. Breiman, K. Asehnoune, D. Barros-aguirre et al., High-content screening technology combined with a human granuloma model as a new approach to evaluate the activities of drugs against Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.59, pp.3705-3719, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01285011

R. W. Stephens, A. Vaheri, and . Plasminogen, Guidebook to the extracellular matrix and Adhesion proteins, pp.81-83, 1993.

R. Wattiez, C. Hermans, A. Bernard, O. Lesur, and P. Falmagne, Human bronchoalveolar lavage fluid: two-dimensional gel electrophoresis, amino acid microsequencing and identification of major proteins, Electrophoresis, vol.20, pp.1634-1679, 1999.

R. Lottenberg, D. Minning-wenz, and M. D. Boyle, Capturing host plasmin(ogen): a common mechanism for invasive pathogens?, Trends Microbiol, vol.2, pp.20-24, 1994.

P. De-la, M. Santangelo, P. M. Gest, M. E. Guerin, M. Coinçon et al., Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli, J Biol Chem, vol.46, pp.40219-40250, 2011.

P. De-la, M. Santangelo, P. M. Gest, M. E. Guerin, M. Coinçon et al., Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli, J Biol Chem, vol.46, pp.40219-40231

R. Das, S. Ganapathy, M. Settle, and E. F. Plow, Plasminogen promotes macrophage phagocytosis in mice, Blood, vol.124, pp.679-88, 2014.

S. H. Rooijakkers, W. J. Van-wamel, M. Ruyken, K. P. Van-kessel, and J. A. Van-strijp, Antiopsonic properties of staphylokinase, Microb Infect, vol.7, p.476, 2005.

D. D. Crane, S. L. Warner, and C. M. Bosio, A novel role for plasmin-mediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, Francisella tularensis, J Immunol, vol.183, pp.4593-600, 2009.

C. H. Ladel, C. Blum, A. Dreher, K. Reifenberg, M. Kopf et al., Lethal tuberculosis in interleukin-6-deficient mutant mice, Infect Immun, vol.65, pp.4843-4852, 1997.

I. S. Leal, B. Smedegard, P. Andersen, and R. Appelberg, Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine, Infect Immun, vol.67, pp.5747-54, 1999.

R. K. Dutta, M. Kathania, M. Raje, and S. Majumdar, IL-6 inhibits IFN-? induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages, Int J Biochem Cell Biol, vol.44, p.942, 2012.

V. Nagabhushanam, A. Solache, L. M. Ting, C. J. Escaron, J. Y. Zhang et al., Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN gamma, J Immunol, vol.171, pp.4750-4757, 2003.

D. R. Roach, A. G. Bean, C. Demangel, M. P. France, H. Briscoe et al., TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection, J Immunol, vol.168, pp.4620-4627, 2002.

H. Kaneko, H. Yamada, S. Mizuno, T. Udagawa, Y. Kazumi et al., Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice, Lab Investig, vol.79, pp.379-86, 1999.

A. G. Bean, D. R. Roach, H. Briscoe, M. P. France, H. Korner et al., Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin, J Immunol, vol.162, pp.3504-3515, 1999.

M. A. Gardam, E. C. Keystone, R. Menzies, S. Manners, E. Skamene et al., Antitumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management, Lancet Infect Dis, vol.3, issue.03, pp.545-545, 2003.

H. Clay, H. E. Volkman, and L. Ramakrishnan, Tumor necrosis factor signaling mediates G. Echeverría-Valencia, vol.117, pp.36-44, 2019.

, resistance to mycobacteria by inhibiting bacterial growth and macrophage death, Immunity, vol.29, p.284, 2008.

I. E. Flesch and S. H. Kaufmann, Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor, Infect Immun, vol.58, pp.2675-2682, 1990.

M. Engele, E. Stössel, K. Castiglione, N. Schwerdtner, M. Wagner et al., Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis, J Immunol, vol.168, pp.1328-1365, 2002.

Y. Laumonnier, T. Syrovets, L. Burysek, and T. Simmet, Identification of the annexin A2 heterotetramer as a receptor for the plasmin-induced signaling in human peripheral monocytes, Blood, vol.107, pp.3342-3351, 2007.

Q. Li, Y. Laumonnier, T. Syrovets, and T. Simmet, Plasmin triggers cytokine induction in human monocyte-derived macrophages, Arterioscler Thromb Vasc Biol, vol.27, p.1383, 2007.

Y. Zhang, Z. H. Zhou, T. H. Bugge, and L. M. Wahl, Urokinase-type plasminogen activator stimulation of monocyte matrix metalloproteinase-1 production is mediated by plasmin-dependent signaling through annexin A2 and inhibited by inactive plasmin, J Immunol, vol.179, pp.3297-304, 2007.

A. S. Haka, I. Grosheva, R. K. Singh, and F. R. Maxfield, Plasmin promotes foam cell formation by increasing macrophage catabolism of aggregated low-density lipoprotein, Arterioscler Thromb Vasc Biol, vol.33, pp.1768-78, 2013.

R. Das, S. Ganapathy, G. H. Mahabeleshwar, C. Drumm, M. Febbraio et al., Macrophage gene expression and foam cell formation are regulated by plasminogen, Circulation, vol.127, pp.1209-1227, 2013.

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, 2008.

V. A. Boussiotis, E. Y. Tsai, E. J. Yunis, S. Thim, J. C. Delgado et al., IL-10-producing T cells suppress immune responses in anergic tuberculosis patients, J Clin Investig, vol.105, pp.1317-1342, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-01837016

F. Gerosa, C. Nisii, S. Righetti, R. Micciolo, M. Marchesini et al., CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients, Clin Immunol, vol.92, pp.224-258, 1999.

S. Ranjbar, N. Ly, S. Thim, J. M. Reynes, and A. E. Goldfeld, Mycobacterium tuberculosis recall antigens suppress HIV-1 replication in anergic donor cells via CD8+ T cell expansion and increased IL-10 levels, J Immunol, vol.172, pp.1953-1962, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-01836686

C. Bogdan, Y. Vodovotz, and C. Nathan, Macrophage deactivation by interleukin 10, J Exp Med, vol.174, pp.1549-55, 1991.

M. K. Balcewicz-sablinska, H. Gan, and H. G. Remold, Interleukin 10 produced by macrophages inoculated with Mycobacterium avium attenuates mycobacteria-induced apoptosis by reduction of TNF-a activity, J Infect Dis, vol.180, pp.1230-1237, 1999.

S. O'leary, O. 'sullivan, M. P. Keane, and J. , IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages, Am J Respir Cell Mol Biol, vol.45, pp.172-80, 2011.

D. F. Fiorentino, A. Zlotnik, T. R. Mosmann, M. Howard, O. Garra et al., IL-10 inhibits cytokine production by activated macrophages, J Immunol, vol.147, pp.3815-3837, 1991.

P. S. Redford, A. Boonstra, S. Read, J. Pitt, C. Graham et al., Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung, Eur J Immunol, vol.40, pp.2200-2210, 2010.

E. T. Richardson, S. Shukla, D. R. Sweet, P. A. Wearsch, P. N. Tsichlis et al., Tolllike receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells, Infect Immun, vol.83, pp.2242-54, 2015.

H. Luo, J. Zeng, Q. Huang, M. Liu, A. E. Abdalla et al., Mycobacterium tuberculosis Rv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage, J Biomol Struct Dyn, vol.34, pp.585-99, 2016.

W. Deng, W. Li, J. Zeng, Q. Zhao, C. Li et al., Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-?B signaling pathways, Cell Physiol Biochem, vol.33, pp.273-88, 2014.

A. Yonekawa, S. Saijo, Y. Hoshino, Y. Miyake, E. Ishikawa et al., Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria, Immunity, vol.41, pp.402-415, 2014.

H. P. Gideon, J. Phuah, A. J. Myers, B. D. Bryson, M. A. Rodgers et al., Variability in tuberculosis granuloma T cell responses exists, but a balance of proand anti-inflammatory cytokines is associated with sterilization, PLoS Pathog, vol.11, 2015.

M. J. Marakalala, R. M. Raju, K. Sharma, Y. J. Zhang, E. A. Eugenin et al., Inflammatory signaling in human tuberculosis granulomas is spatially organized, Nat Med, vol.22, pp.531-539, 2016.

R. E. Gerszten, E. A. Garcia-zepeda, Y. C. Lim, M. Yoshida, H. A. Ding et al., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions, Nature, vol.398, pp.718-741, 1999.

N. Mukaida, A. Harada, and K. Matsushima, Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions, Cytokine Growth Factor Rev, vol.9, pp.22-23, 1998.

C. G. Larsen, M. K. Thomsen, B. Gesser, P. D. Thomsen, B. W. Deleuran et al., The delayed-type hypersensitivity reaction is dependent on IL-8. Inhibition of a tuberculin skin reaction by an anti-IL-8 monoclonal antibody, J Immunol, vol.155, pp.2151-2158, 1995.

A. Krupa, M. Fol, B. R. Dziadek, E. Kepka, D. Wojciechowska et al., Binding of CXCL8/IL-8 to Mycobacterium tuberculosis modulates the innate immune response, Mediat Inflamm, 2015.