L. Vujanovic and L. H. Butterweld, Melanoma cancer vaccines and anti-tumor T cell responses, J Cell Biochem, vol.102, pp.301-310, 2007.

E. Jager, H. Hohn, A. Necker, R. Forster, J. Karbach et al., Peptide-speciWc CD8+ T-cell evolution in vivo: response to peptide vaccination with Melan-A/MART-1, Int J Cancer, vol.98, pp.376-388, 2002.

E. Jager, M. Maeurer, H. Hohn, J. Karbach, D. Jager et al., Clonal expansion of Melan-A-speciWc cytotoxic T lymphocytes in a melanoma patient responding to continued immunization with melanoma-associated peptides, Int J Cancer, vol.86, pp.538-547, 2000.

M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu et al., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, vol.298, pp.850-854, 2002.

A. Mackensen, N. Meidenbauer, S. Vogl, M. Laumer, J. Berger et al., Phase I study of adoptive T-cell therapy using antigen-speciWc CD8+ T cells for the treatment of patients with metastatic melanoma, J Clin Oncol, vol.24, pp.5060-5069, 2006.

N. Meidenbauer, J. Marienhagen, M. Laumer, S. Vogl, J. Heymann et al., Survival and tumor localization of adoptively transferred Melan-A-speciWc T cells in melanoma patients, J Immunol, vol.170, pp.2161-2169, 2003.

C. Yee, J. A. Thompson, D. Byrd, S. R. Riddell, P. Roche et al., Adoptive T cell therapy using antigen-spe-ciWc CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor eVect of transferred T cells, Proc Natl Acad Sci, vol.99, pp.16168-16173, 2002.

H. Benlalam, V. Vignard, A. Khammari, A. Bonnin, Y. Godet et al., Infusion of Melan-A/Mart-1 speciWc tumor-inWltrating lymphocytes enhanced relapse-free survival of melanoma patients, Cancer Immunol Immunother, vol.56, pp.515-526, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02482050

V. Vignard, B. Lemercier, A. Lim, M. C. Pandolwno, Y. Guilloux et al., Adoptive transfer of tumor-reactive Melan-A-speciWc CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-speciWc T cells, J Immunol, vol.175, pp.4797-4805, 2005.

Y. Godet, A. Moreau-aubry, Y. Guilloux, V. Vignard, A. Khammari et al., MELOE-1 is a new antigen overexpressed in melanomas and involved in adoptive T cell transfer eYciency, J Exp Med, vol.205, pp.2673-2682, 2008.

B. Dreno, J. M. Nguyen, A. Khammari, M. C. Pandolwno, M. H. Tessier et al., Randomized trial of adoptive transfer of melanoma tumor-inWltrating lymphocytes as adjuvant therapy for stage III melanoma, Cancer Immunol Immunother, vol.51, pp.539-546, 2002.

F. Jotereau, M. C. Pandolwno, D. Boudart, E. Diez, B. Dreno et al., High-fold expansion of human cytotoxic T-lymphocytes speciWc for autologous melanoma cells for use in immunotherapy, J Immunother, vol.10, pp.405-411, 1991.

M. C. Pandolwno, N. Labarriere, M. H. Tessier, A. Cassidanius, S. Bercegeay et al., High-scale expansion of melanoma-reactive TIL by a polyclonal stimulus: predictability and relation with disease advancement, Cancer Immunol Immunother, vol.50, pp.134-140, 2001.

N. Gervois, N. Labarriere, L. Guiner, S. Pandolwno, M. C. Fonteneau et al., High avidity melanoma-reactive cytotoxic T lymphocytes are eYciently induced from peripheral blood lymphocytes on stimulation by peptide-pulsed melanoma cells, Clin Cancer Res, vol.6, pp.1459-1467, 2000.

H. Benlalam, N. Labarriere, B. Linard, L. Derre, E. Diez et al., Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma inWltrating lymphocytes (TIL): implications for immunotherapy, Eur J Immunol, vol.31, pp.2007-2015, 2001.

T. Espevik and J. Nissen-meyer, A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes, J Immunol Methods, vol.95, pp.99-105, 1986.

T. Jung, U. Schauer, C. Heusser, C. Neumann, and C. Rieger, Detection of intracellular cytokines by Xow cytometry, J Immunol Methods, vol.159, pp.197-207, 1993.

M. Bodinier, M. A. Peyrat, C. Tournay, F. Davodeau, F. Romagne et al., EYcient detection and immunomagnetic sorting of speciWc T cells using multimers of MHC class I and peptide with reduced CD8 binding, Nat Med, vol.6, pp.707-710, 2000.

N. Labarriere, N. Gervois, A. Bonnin, R. Bouquie, F. Jotereau et al., PBMC are as good a source of tumor-reactive T lymphocytes as TIL after selection by Melan-A/A2 multimer immunomagnetic sorting, Cancer Immunol Immunother, vol.57, pp.185-195, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00167752

K. Falk, O. Rotzschke, S. Stevanovic, G. Jung, and H. G. Rammensee, Allele-speciWc motifs revealed by sequencing of self-peptides eluted from MHC molecules, Nature, vol.351, pp.290-296, 1991.

H. G. Rammensee, T. Friede, and S. Stevanoviic, MHC ligands and peptide motifs: Wrst listing, Immunogenetics, vol.41, pp.178-228, 1995.

R. Bouquie, A. Bonnin, K. Bernardeau, A. Khammari, B. Dreno et al., A fast and eYcient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor speciWc T lymphocytes, Cancer Immunol Immunother, vol.58, pp.553-566, 2009.

R. F. Wang, M. R. Parkhurst, Y. Kawakami, P. F. Robbins, and S. A. Rosenberg, Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen, J Exp Med, vol.183, pp.1131-1140, 1996.

C. A. Aarnoudse, P. B. Van-den-doel, B. Heemskerk, and P. I. Schrier, Interleukin-2-induced, melanoma-speciWc T cells recognize CAMEL, an unexpected translation product of LAGE-1, Int J Cancer, vol.82, pp.442-448, 1999.

Y. Guilloux, S. Lucas, V. G. Brichard, A. Van-pel, C. Viret et al., A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene, J Exp Med, vol.183, pp.1173-1183, 1996.

S. A. Rosenberg, P. Tong-on, Y. Li, J. P. Riley, M. El-gamil et al., IdentiWcation of BING-4 cancer antigen translated from an alternative open reading frame of a gene in the extended MHC class II region using lymphocytes from a patient with a durable complete regression following immunotherapy, J Immunol, vol.168, pp.2402-2407, 2002.

J. Huang, M. El-gamil, M. E. Dudley, Y. E. Li, S. A. Rosenberg et al., T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product, J Immunol, vol.172, pp.6057-6064, 2004.

M. Kozak, EVects of intercistronic length on the eYciency of reinitiation by eucaryotic ribosomes, Mol Cell Biol, vol.7, pp.3438-3445, 1987.

M. Kozak, Pushing the limits of the scanning mechanism for initiation of translation, Gene, vol.299, pp.1-34, 2002.

B. G. Luukkonen, W. Tan, and S. Schwartz, EYciency of reinitiation of translation on human immunodeWciency virus type 1 mR-NAs is determined by the length of the upstream open reading frame and by intercistronic distance, J Virol, vol.69, pp.4086-4094, 1995.

D. G. Macejak and P. Sarnow, Internal initiation of translation mediated by the 5? leader of a cellular mRNA, Nature, vol.353, pp.90-94, 1991.

J. Pelletier and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA, Nature, vol.334, pp.320-325, 1988.

Z. Xiong, E. Liu, Y. Yan, R. T. Silver, F. Yang et al., An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions, J Immunol, vol.177, pp.4907-4916, 2006.

S. M. Mayrand and W. R. Green, Non-traditionally derived CTL epitopes: exceptions that prove the rules?, Immunol Today, vol.19, pp.551-556, 1998.