A. Degterev, M. Boyce, and J. Yuan, A decade of caspases, Oncogene, vol.22, pp.8543-8567, 2003.

D. Westphal, G. Dewson, P. E. Czabotar, and R. M. Kluck, Molecular biology of Bax and Bak activation and action, Biochim. Biophys. Acta, vol.1813, pp.521-531, 2011.

L. Lalier, Prostaglandins antagonistically control Bax activation during apoptosis, Cell Death Differ, vol.18, pp.528-537, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00587969

J. E. Chipuk, Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis, Cell, vol.148, pp.988-1000, 2012.

P. F. Cartron, The first ? helix of bax plays a necessary role in its ligand-induced activation by the BH3-only proteins bid and PUMA, Mol. Cell, vol.16, pp.807-818, 2004.

D. Mérino, The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins, J. Cell Biol, vol.186, pp.355-362, 2009.

R. I. Aqeilan, G. A. Calin, and C. M. Croce, miR-15a and miR-16-1 in cancer: discovery, function and future perspectives, Cell Death Differ, vol.17, pp.215-220, 2010.

R. Garzon, MicroRNA 29b functions in acute myeloid leukemia, Blood, vol.114, pp.5331-5341, 2009.

R. Beroukhim, The landscape of somatic copynumber alteration across human cancers, Nature, vol.463, pp.899-905, 2010.

S. W. Lowe, E. Cepero, and G. Evan, Intrinsic tumour suppression, Nature, vol.432, pp.307-315, 2004.

S. Pelengaris, M. Khan, and G. I. Evan, Suppression of Myc-induced apoptosis in ? cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, Cell, vol.109, pp.321-334, 2002.

, Using an elegant transgenic model, this paper shows that the activation of MYC triggers mitochondrial apoptosis in vivo

T. D. Allen, E. M. Rodriguez, K. D. Jones, and J. M. Bishop, Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma, Cancer Res, vol.71, pp.6010-6018, 2011.

A. Strasser, S. Cory, and J. M. Adams, Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases, EMBO J, vol.30, pp.3667-3683, 2011.

S. P. Glaser, This paper defines MCL1 as a therapeutic target that is crucial for the development and survival of AML cells, using genetically engineered mice and human samples, Genes Dev, vol.26, pp.120-125, 2012.

P. N. Kelly, S. Grabow, A. R. Delbridge, A. Strasser, and J. M. Adams, Endogenous Bcl-x L is essential for Mycdriven lymphomagenesis in mice, Blood, vol.118, pp.6380-6386, 2011.

T. Ni-chonghaile, This paper shows that in diverse cancers the sensitivity of tumour cell mitochondria to a range of BH3 peptides is indicative of a clinical response to chemotherapy, Science, vol.334, pp.1129-1133, 2011.

M. Campone, c-Myc dependent expression of proapoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1, Mol. Cancer, vol.10, p.110, 2011.

D. Barbone, The Bcl-2 repertoire of mesothelioma spheroids underlies acquired apoptotic multicellular resistance, Cell Death Dis, vol.2, p.174, 2011.

T. Muranen, Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells, Cancer Cell, vol.21, pp.227-239, 2012.

T. Gallenne, Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members, J. Cell Biol, vol.185, pp.279-290, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00450677

A. Letai, Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics, Cancer Cell, vol.2, pp.183-192, 2002.

T. Kuwana, BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly, Mol. Cell, vol.17, pp.525-535, 2005.

H. Zha, Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells, Mol. Cell. Biol, vol.16, pp.6494-6508, 1996.

M. Sattler, Structure of Bcl-x L -Bak peptide complex: recognition between regulators of apoptosis, Science, vol.275, pp.983-986, 1997.

A. M. Petros, Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies, Protein Sci, vol.9, pp.2528-2534, 2000.

X. Liu, S. Dai, Y. Zhu, P. Marrack, and J. W. Kappler, The structure of a Bcl-x L /Bim fragment complex: implications for Bim function, Immunity, vol.19, pp.341-352, 2003.

M. G. Hinds and C. L. Day, Regulation of apoptosis: uncovering the binding determinants, Curr. Opin. Struct. Biol, vol.15, pp.690-699, 2005.

A. M. Petros, E. T. Olejniczak, and S. W. Fesik, Structural biology of the Bcl-2 family of proteins, Biochim. Biophys. Acta, vol.1644, pp.83-94, 2004.

C. Smits, P. E. Czabotar, M. G. Hinds, and C. L. Day, Structural plasticity underpins promiscuous binding of the prosurvival protein A1, Structure, vol.16, pp.818-829, 2008.

P. E. Czabotar, Structural insights into the degradation of Mcl-1 induced by BH3 domains, Proc. Natl Acad. Sci. USA, vol.104, pp.6217-6222, 2007.

G. Lessene, P. E. Czabotar, and P. M. Colman, This paper reviews the structural aspects of BCL-2 family members, Nature Rev. Drug Discov, vol.7, pp.989-1000, 2008.

A. V. Follis, PUMA binding induces partial unfolding within BCL-x L to disrupt p53 binding and promote apoptosis, Nature Chem. Biol, vol.9, pp.163-168, 2013.

P. E. Czabotar, Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis, Cell, vol.152, pp.519-531, 2013.

E. Gavathiotis, References 33 and 34 provide structural insights into BAX activation by BH3 domains, Nature, vol.455, pp.1076-1081, 2008.

E. Gavathiotis, D. E. Reyna, M. L. Davis, G. H. Bird, and L. D. Walensky, BH3-triggered structural reorganization drives the activation of proapoptotic BAX, Mol. Cell, vol.40, pp.481-492, 2010.

E. Gavathiotis, D. E. Reyna, J. A. Bellairs, E. S. Leshchiner, and L. D. Walensky, Direct and selective small-molecule activation of proapoptotic BAX, Nature Chem. Biol, vol.8, pp.639-645, 2012.

T. Oltersdorf, An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.435, pp.677-681, 2005.

, This paper, which describes the characterization of ABT-737, showed that inhibition of BCL-2 homologues by small molecules is achievable, and that these small molecules can trigger cancer cell death

C. Tse, ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res, vol.68, pp.3421-3428, 2008.

E. F. Lee, Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family, Cell Death Differ, vol.14, pp.1711-1713, 2007.

S. Chen, Y. Dai, X. Pei, and S. Grant, Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-x L , and Mcl-1, Mol. Cell. Biol, vol.29, pp.6149-6169, 2009.

J. Yu and L. Zhang, PUMA, a potent killer with or without p53, Oncogene, vol.27, pp.71-83, 2008.

S. Barillé-nion, N. Bah, E. Véquaud, and P. Juin, Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy, Anticancer Res, vol.32, pp.4225-4233, 2012.

J. Luo, N. L. Solimini, and S. J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction, Cell, vol.136, pp.823-837, 2009.

O. J. Shah, Bcl-X L represents a druggable molecular vulnerability during aurora B inhibitormediated polyploidization, Proc. Natl Acad. Sci. USA, vol.107, pp.12634-12639, 2010.

F. Braun, J. Bertin-ciftci, A. Gallouet, J. Millour, and P. Juin, Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-x L inhibition, PLoS ONE, vol.6, p.23577, 2011.

L. R. Harrison, Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1, J. Clin. Invest, vol.121, pp.1075-1087, 2011.

C. Ryder, K. Mccoll, F. Zhong, and C. W. Distelhorst, Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G proteincoupled receptor Gpr65 signaling to Mek/Erk, J. Biol. Chem, vol.287, pp.27863-27875, 2012.

J. T. Lee, D. J. Innes, and M. E. Williams, Sequential bcl-2 and c-myc oncogene rearrangements associated with the clinical transformation of non-Hodgkin's lymphoma, J. Clin. Invest, vol.84, pp.1454-1459, 1989.

A. Singh, A gene expression signature associated with 'K-Ras addiction' reveals regulators of EMT and tumor cell survival, Cancer Cell, vol.15, pp.489-500, 2009.

S. De-carné-trécesson, Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-x L and MCL1 proteins, J. Biol. Chem, vol.286, pp.12825-12838, 2011.

D. A. Barbie, Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1, Nature, vol.462, pp.108-112, 2009.

S. V. Sharma and J. Settleman, Oncogenic shock: turning an activated kinase against the tumor cell, Cell Cycle, vol.5, pp.2878-2880, 2006.

R. B. Corcoran, Synthetic lethal interaction of combined BCL-X L and MEK inhibition promotes tumor regressions in KRAS mutant cancer models, Cancer Cell, vol.23, pp.121-128, 2013.

W. H. Wilson, Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity, Lancet Oncol, vol.11, pp.1149-1159, 2010.

K. D. Mason, Programmed anuclear cell death delimits platelet life span, Cell, vol.128, pp.1173-1186, 2007.

H. Zhang, Bcl-2 family proteins are essential for platelet survival, Cell Death Differ, vol.14, pp.943-951, 2007.

A. W. Roberts, Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease, J. Clin. Oncol, vol.30, pp.488-496, 2012.

A. V. Kurtova, Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesionmediated drug resistance, Blood, vol.114, pp.4441-4450, 2009.

M. Vogler, Concurrent up-regulation of BCL-X L and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia, Blood, vol.113, pp.4403-4413, 2009.

M. S. Davids, Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia, Blood, vol.120, pp.3501-3509, 2012.

C. M. Rudin, Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer, Clin. Cancer Res, vol.18, pp.3163-3169, 2012.

C. L. Hann, Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer, Cancer Res, vol.68, pp.2321-2328, 2008.

A. J. Souers, ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets, Nature Med, vol.19, pp.202-208, 2013.

V. Del-gaizo-moore, Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737, J. Clin. Invest, vol.117, pp.112-121, 2007.

T. Vo, Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML, Cell, vol.151, pp.344-355, 2012.

D. J. Veis, C. M. Sorenson, J. R. Shutter, and S. J. Korsmeyer, Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair, Cell, vol.75, pp.229-240, 1993.

J. T. Opferman, Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1, Nature, vol.426, pp.671-676, 2003.

D. Nijhawan, Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation, Genes Dev, vol.17, pp.1475-1486, 2003.

L. Chen, Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function, Mol. Cell, vol.17, pp.393-403, 2005.

, This comprehensive study establishes that anti-apoptotic proteins of the BCL-2 family promote survival by engaging distinct

G. J. Gores and S. H. Kaufmann, Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors, Genes Dev, vol.26, pp.305-311, 2012.

M. F. Van-delft, The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized, Cancer Cell, vol.10, pp.389-399, 2006.

M. L. Stewart, E. Fire, A. E. Keating, and L. D. Walensky, The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer, Nature Chem. Biol, vol.6, pp.595-601, 2010.

N. A. Cohen, A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival, Chem. Biol, vol.19, pp.1175-1186, 2012.

J. T. Opferman, Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells, Science, vol.307, pp.1101-1104, 2005.

G. Lessene, Structure-guided design of a selective BCL-X L inhibitor, Nature Chem. Biol, vol.9, pp.390-397, 2013.

G. Wei, Chemical genomics identifies smallmolecule MCL1 repressors and BCL-x L as a predictor of MCL1 dependency, Cancer Cell, vol.21, pp.547-562, 2012.

C. S. Mitsiades, Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition, J. Clin. Endocrinol. Metab, vol.92, pp.4845-4852, 2007.

F. Gautier, Bax activation by engagement with, then release from, the BH3 binding site of Bcl-x L, Mol. Cell. Biol, vol.31, pp.832-844, 2011.

J. Bertin-ciftci, pRb/E2F-1-mediated caspasedependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-x L inhibitor ABT-737, Cell Death Differ, vol.20, pp.755-764, 2013.

D. Yecies, N. E. Carlson, J. Deng, and A. Letai, Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1, Blood, vol.115, pp.3304-3313, 2010.

J. F. Lovell, Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax, Cell, vol.135, pp.1074-1084, 2008.

L. P. Billen, C. L. Kokoski, J. F. Lovell, B. Leber, and D. W. Andrews, Bcl-X L inhibits membrane permeabilization by competing with Bax, PLoS Biol, vol.6, p.147, 2008.

, Using a minimal cell-free assay and fluorescence techniques, References 81 and 82 describe the dynamic interplay between BH3 activators, BAX and anti-apoptotic proteins in the presence of cellular membranes

J. Kale, Q. Liu, B. Leber, and D. W. Andrews, Shedding light on apoptosis at subcellular membranes, Cell, vol.151, pp.1179-1184, 2012.

F. Llambi, A unified model of mammalian BCL-2 protein family interactions at the mitochondria, Mol. Cell, vol.44, pp.517-531, 2011.

F. Edlich, Bcl-x L retrotranslocates Bax from the mitochondria into the cytosol, Cell, vol.145, pp.104-116, 2011.

F. Todt, Z. Cakir, F. Reichenbach, R. J. Youle, and F. Edlich, The C-terminal helix of Bcl-x L mediates Bax retrotranslocation from the mitochondria, Cell Death Differ, vol.20, pp.333-342, 2013.

A. Aranovich, Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-X L and Bcl-2 quantified in live MCF-7 cells, Mol. Cell, vol.45, pp.754-763, 2012.

. Hopefully, first of a series of novel studies that will refine our view of the interactions between BCL-2 family members. This paper examines full-length proteins interacting in intact cell membranes, enabling the function of BCL-2 family members

D. Mérino, Bcl-2, Bcl-x L , and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells, Blood, vol.119, pp.5807-5816, 2012.

N. Rampino, Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype, Science, vol.275, pp.967-969, 1997.

P. F. Cartron, Nonredundant role of Bax and Bak in Bid-mediated apoptosis, Mol. Cell. Biol, vol.23, pp.4701-4712, 2003.

A. U. Lindner, Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy, Cancer Res, vol.73, pp.519-528, 2013.

R. Dumitru, Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis, Mol. Cell, vol.46, pp.573-583, 2012.

S. W. Tait, Resistance to caspase-independent cell death requires persistence of intact mitochondria, Dev. Cell, vol.18, pp.802-813, 2010.

S. Montessuit, Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization, Cell, vol.142, pp.889-901, 2010.

M. C. Maiuri, Functional and physical interaction between Bcl-X L and a BH3-like domain in Beclin-1

, EMBO J, vol.26, pp.2527-2539, 2007.

M. W. Lee, I. Hirai, and H. Wang, Caspase-3-mediated cleavage of Rad9 during apoptosis, Oncogene, vol.22, pp.6340-6346, 2003.

L. J. Beverly, Regulation of anti-apoptotic BCL2-proteins by non-canonical interactions: the next step forward or two steps back?, J. Cell. Biochem, vol.113, pp.3-12, 2012.

Y. Rong, P. Barr, V. C. Yee, and C. W. Distelhorst, Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor, Biochim. Biophys. Acta, vol.1793, pp.971-978, 2009.

S. A. Oakes, Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum, Proc. Natl Acad. Sci. USA, vol.102, pp.105-110, 2005.

B. Bonneau, J. Prudent, N. Popgeorgiev, and G. Gillet, Non-apoptotic roles of Bcl-2 family: the calcium connection, Biochim. Biophys. Acta, vol.1833, pp.1755-1765, 2013.

M. C. Wei, Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death, Science, vol.292, pp.727-730, 2001.

E. H. Cheng, BCL-2, BCL-X L sequester BH3 domain-only molecules preventing BAX-and BAKmediated mitochondrial apoptosis, Mol. Cell, vol.8, pp.705-711, 2001.

G. Bellot, TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax, Cell Death Differ, vol.14, pp.785-794, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00113567

Y. Zaltsman, MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria, Nature Cell Biol, vol.12, pp.553-562, 2010.

S. R. Datta, Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell, vol.91, pp.231-241, 1997.

S. J. Gardai, Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils, J. Biol. Chem, vol.279, pp.21085-21095, 2004.

M. Elgendy, C. Sheridan, G. Brumatti, and S. J. Martin, Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival, Mol. Cell, vol.42, pp.23-35, 2011.

P. Juin, A. O. Hueber, T. Littlewood, and G. Evan, c-Mycinduced sensitization to apoptosis is mediated through cytochrome c release, Genes Dev, vol.13, pp.1367-1381, 1999.

M. A. Nikiforov, Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition, Proc. Natl Acad. Sci. USA, vol.104, pp.19488-19493, 2007.

A. V. Vaseva and U. M. Moll, The mitochondrial p53 pathway, Biochim. Biophys. Acta, vol.1787, pp.414-420, 2009.

W. Xia, A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer, Proc. Natl Acad. Sci. USA, vol.103, pp.7795-7800, 2006.

L. Soucek, Modelling Myc inhibition as a cancer therapy, Nature, vol.455, pp.679-683, 2008.

C. Akgul, Mcl-1 is a potential therapeutic target in multiple types of cancer, Cell. Mol. Life Sci, vol.66, pp.1326-1336, 2009.

M. R. Warr and G. C. Shore, Unique biology of Mcl-1: therapeutic opportunities in cancer, Curr. Mol. Med, vol.8, pp.138-147, 2008.

R. M. Fritsch, G. Schneider, D. Saur, M. Scheibel, and R. M. Schmid, Translational repression of MCL-1 couples stress-induced eIF2? phosphorylation to mitochondrial apoptosis initiation, J. Biol. Chem, vol.282, pp.22551-22562, 2007.

J. R. Mills, mTORC1 promotes survival through translational control of Mcl-1, Proc. Natl Acad. Sci. USA 105, pp.10853-10858, 2008.

B. A. Quinn, Targeting Mcl-1 for the therapy of cancer, Expert Opin. Investig. Drugs, vol.20, pp.1397-1411, 2011.

Q. Zhong, W. Gao, F. Du, and X. Wang, Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis, Cell, vol.121, pp.1085-1095, 2005.

Q. Ding, Degradation of Mcl-1 by ?-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization, Mol. Cell. Biol, vol.27, pp.4006-4017, 2007.

H. Inuzuka, SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction, Nature, vol.471, pp.104-109, 2011.

I. E. Wertz, Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7, Nature, vol.471, pp.110-114, 2011.

M. Schwickart, Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival, Nature, vol.463, pp.103-107, 2010.

A. De-biasio, N-terminal truncation of antiapoptotic MCL1, but not G2/M-induced phosphorylation, is associated with stabilization and abundant expression in tumor cells, J. Biol. Chem, vol.282, pp.23919-23936, 2007.

U. Maurer, C. Charvet, A. S. Wagman, E. Dejardin, and D. R. Green, Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1, Mol. Cell, vol.21, pp.749-760, 2006.

R. Chu, D. T. Terrano, and T. C. Chambers, Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration, Biochem. Pharmacol, vol.83, pp.199-206, 2012.