A. Khammari, A. Knol, and J. Nguyen, Adoptive TIL transfer in the adjuvant setting for melanoma: long-term patient survival, J Immunol Res, vol.2014, pp.1-10, 2014.

S. A. Rosenberg, Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know, Nat Rev Clin Oncol, vol.8, pp.577-85, 2011.

R. A. Morgan, M. E. Dudley, and J. R. Wunderlich, Cancer regression in patients after transfer of genetically engineered lymphocytes, Science, vol.314, pp.126-135, 2006.

J. J. Hong, S. A. Rosenberg, and M. E. Dudley, Successful treatment of melanoma brain metastases with adoptive cell therapy, Clin Cancer Res, vol.16, pp.4892-4900, 2010.

P. F. Robbins, S. H. Kassim, and T. Tran, A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response, Clin Cancer Res, vol.21, pp.1019-1046, 2015.

M. A. Pule, B. Savoldo, and G. D. Myers, Virus-Specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma, Nat Med, vol.14, pp.1264-70, 2008.

J. N. Kochenderfer, M. E. Dudley, and S. A. Feldman, B-Cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells, Blood, vol.119, pp.2709-2729, 2012.

C. Yee, J. A. Thompson, and D. Byrd, Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc Natl Acad Sci U S A, vol.99, pp.16168-73, 2002.

V. Vignard, B. Lemercier, and A. Lim, Adoptive transfer of tumorreactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells, J Immunol, vol.175, pp.4797-805, 2005.

N. N. Hunder, H. Wallen, and J. Cao, Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1, N Engl J Med, vol.358, pp.2698-703, 2008.

A. Khammari, N. Labarrière, and V. Vignard, Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte clones, J Invest Dermatol, vol.129, pp.2835-2877, 2009.

N. Labarriere, A. Fortun, and A. Bellec, A full GMP process to select and amplify epitope-specific T lymphocytes for adoptive immunotherapy of metastatic melanoma, Clinical and Developmental Immunology, vol.2013, pp.1-11, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01727317

S. Simon, V. Vignard, and E. Varey, Emergence of high-avidity Melan-A-Specific Clonotypes as a reflection of Anti-PD-1 clinical efficacy, Cancer Res, vol.77, pp.7083-93, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01636933

M. Donia, J. W. Kjeldsen, and R. Andersen, PD-1 + Polyfunctional T Cells Dominate the Periphery after Tumor-Infiltrating Lymphocyte Therapy for Cancer, Clin Cancer Res, vol.23, pp.5779-88, 2017.

S. Rafiq, O. O. Yeku, and H. J. Jackson, Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo, Nat Biotechnol, vol.36, pp.847-56, 2018.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering, Cell, vol.157, pp.1262-78, 2014.

W. Wang, C. Ye, and J. Liu, Ccr5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection, PLoS One, vol.9, p.115987, 2014.

A. Lloyd, O. N. Vickery, and B. Laugel, Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies, Front Immunol, vol.4, p.221, 2013.

S. Su, B. Hu, and J. Shao, CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients, Sci Rep, vol.6, 2016.

L. J. Rupp, K. Schumann, and K. T. Roybal, CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells, Sci Rep, vol.7, p.737, 2017.

X. Guo, H. Jiang, and B. Shi, Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma, front Pharmacol. Frontiers, vol.9, p.1118, 2018.

W. Hu, Z. Zi, and Y. Jin, Crispr/Cas9-Mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions, Cancer Immunol Immunother, vol.68, pp.365-77, 2019.

C. Zhang, Y. Peng, and P. Hublitz, Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy, Sci Rep, vol.8, p.5549, 2018.

S. Su, Z. Zou, and F. Chen, CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer, Oncoimmunology, vol.6, p.1249558, 2017.

Z. Zhao, L. Shi, and W. Zhang, CRISPR knock out of programmed cell death protein 1 enhances anti-tumor activity of cytotoxic T lymphocytes, Oncotarget, vol.9, pp.5208-5223, 2018.

L. Trautmann, N. Labarrière, and F. Jotereau, Dominant TCR V alpha usage by virus and tumor-reactive T cells with wide affinity ranges for their specific antigens, Eur J Immunol, vol.32, pp.3181-90, 2002.

K. Schumann, S. Lin, and E. Boyer, Generation of knock-in primary human T cells using Cas9 ribonucleoproteins, Proc Natl Acad Sci U S A, vol.112, pp.10437-10479, 2015.

M. Haeussler, K. Schönig, and H. Eckert, Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR, Genome Biol, vol.17, p.148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346049

P. Dietrich, L. Gal, F. Dutoit, and V. , Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen, J Immunol, vol.170, pp.5103-5112, 2003.

F. Davodeau, The tight interallelic positional coincidence that distinguishes T-cell receptor Jalpha usage does not result from homologous chromosomal pairing during ValphaJalpha rearrangement, Embo J, vol.20, pp.4717-4746, 2001.

M. P. Lefranc, Nomenclature of the human T cell receptor genes, Curr Protoc Immunol, 2001.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

M. E. Ritchie, B. Phipson, and D. Wu, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, pp.47-54, 2015.

H. Gao, K. Li, and H. Tu, Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma, Clin Cancer Res, vol.20, pp.6418-6446, 2014.

P. Bankhead, M. B. Loughrey, and J. A. Fernández, QuPath: open source software for digital pathology image analysis, Sci Rep, vol.7, p.16878, 2017.

S. Simon, V. Vignard, and L. Florenceau, Pd-1 expression conditions T cell avidity within an antigen-specific repertoire, Oncoimmunology, vol.5, p.1104448, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01280886

S. Simon and N. Labarriere, PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy?, Oncoimmunology, vol.11, p.1364828, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01592666

A. Gros, P. F. Robbins, and X. Yao, PD-1 identifies the patient-specific CD8? tumor-reactive repertoire infiltrating human tumors, J Clin Invest, vol.124, pp.2246-59, 2014.

W. Heyer, K. T. Ehmsen, and J. Liu, Regulation of homologous recombination in eukaryotes, Annu Rev Genet, vol.44, pp.113-152, 2010.

A. Gimelbrant, J. N. Hutchinson, and B. R. Thompson, Widespread monoallelic expression on human autosomes, Science, vol.318, pp.1136-1176, 2007.

P. M. Odorizzi, K. E. Pauken, and M. A. Paley, Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells, J Exp Med, vol.212, pp.1125-1162, 2015.

A. Ribas and S. Hu-lieskovan, What does PD-L1 positive or negative mean?, J Exp Med, vol.213, pp.2835-2875, 2016.

C. M. Bollard, S. Gottschalk, and V. Torrano, Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins, J Clin Oncol, vol.32, pp.798-808, 2014.

S. D. Blackburn, H. Shin, and W. N. Haining, Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection, Nat Immunol, vol.10, pp.29-37, 2009.

H. Jin, A. C. Anderson, and W. G. Tan, Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection, Proc Natl Acad Sci U S A, vol.107, pp.14733-14741, 2010.

R. J. Johnston, L. Comps-agrar, and J. Hackney, The immunoreceptor TIGIT regulates antitumor and antiviral CD8 + T cell effector function, Cancer Cell, vol.26, pp.923-960, 2014.

T. Shi, Y. Ma, and L. Yu, Cancer immunotherapy: a focus on the regulation of immune checkpoints, Int J Mol Sci, vol.19, p.1389, 2018.