K. Kessenbrock, V. Plaks, and Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment, Cell, vol.141, pp.52-67, 2010.

T. Klein and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases, Amino Acids, vol.41, pp.271-290, 2011.

S. Triebel, J. Blaser, H. Reinke, and H. Tschesche, A 25 kda alpha 2-microglobulin-related protein is a component of the 125 kda form of human gelatinase, FEBS Lett, vol.314, pp.386-388, 1992.

L. Kjeldsen, A. H. Johnsen, H. Sengelov, and N. Borregaard, Isolation and primary structure of ngal, a novel protein associated with human neutrophil gelatinase, J. Biol. Chem, vol.268, pp.10425-10432, 1993.

M. Rydlova, L. Holubec, . Jr, M. Ludvikova, . Jr et al., Biological activity and clinical implications of the matrix metalloproteinases, Anticancer Res, vol.28, pp.1389-1397, 2008.

R. Roy, J. Yang, and M. A. Moses, Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer, J. Clin. Oncol, vol.27, pp.5287-5297, 2009.

S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer, Biochim. Biophys. Acta, vol.1826, pp.129-169, 2012.

K. Makris and N. Kafkas, Neutrophil gelatinase-associated lipocalin in acute kidney injury, Adv. Clin. Chem, vol.58, pp.141-191, 2012.

J. Yang and M. A. Moses, Lipocalin 2: A multifaceted modulator of human cancer, Cell Cycle, vol.8, pp.2347-2352, 2009.

D. Bolignano, V. Donato, A. Lacquaniti, M. R. Fazio, C. Bono et al., Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: A new protein enters the scene, Cancer Lett, vol.288, pp.10-16, 2010.

G. Klein, E. Vellenga, M. W. Fraaije, W. A. Kamps, and E. S. De-bont, The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g., acute leukemia, Crit. Rev. Oncol. Hematol, vol.50, pp.87-100, 2004.

X. F. Yu and Z. C. Han, Matrix metalloproteinases in bone marrow: Roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies, Histol. Histopathol, vol.21, pp.519-531, 2006.

F. Poyer, B. Coquerel, R. Pegahi, L. Cazin, V. Norris et al., Secretion of MMP-2 and MMP-9 induced by VEGF autocrine loop correlates with clinical features in childhood acute lymphoblastic leukemia, Leuk. Res, vol.33, pp.407-417, 2009.

P. Schneider, O. Costa, E. Legrand, D. Bigot, S. Lecleire et al., In vitro secretion of matrix metalloprotease 9 is a prognostic marker in childhood acute lymphoblastic leukemia, Leuk. Res, vol.34, pp.24-31, 2010.

J. Vandooren, P. E. Van-den-steen, and G. Opdenakker, Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9, The next decade, vol.48, pp.222-272, 2013.

N. Malla, S. Sjoli, J. O. Winberg, E. Hadler-olsen, and L. Uhlin-hansen, Biological and pathobiological functions of gelatinase dimers and complexes, Connect. Tissue Res, vol.49, pp.180-184, 2008.

L. Kjeldsen, O. W. Bjerrum, D. Hovgaard, A. H. Johnsen, M. Sehested et al., Human neutrophil gelatinase: A marker for circulating blood neutrophils. Purification and quantitation by enzyme linked immunosorbent assay, Eur. J. Haematol, vol.49, pp.180-191, 1992.

B. Bauvois, J. Dumont, C. Mathiot, and J. P. Kolb, Production of matrix metalloproteinase-9 in early stage B-CLL: Suppression by interferons, Leukemia, vol.16, pp.791-798, 2002.

X. Provatopoulou, A. Gounaris, E. Kalogera, F. Zagouri, I. Flessas et al., Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease, BMC Cancer, vol.9, p.390, 2009.

K. Miharada, T. Hiroyama, K. Sudo, I. Danjo, T. Nagasawa et al., Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells, J. Cell Physiol, vol.215, pp.526-537, 2008.

A. Janowska-wieczorek, L. A. Marquez, A. Matsuzaki, H. R. Hashmi, L. M. Larratt et al., Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: Comparison with normal bone marrow cells, Br. J. Haematol, vol.105, pp.402-411, 1999.

N. Borregaard and J. B. Cowland, Granules of the human neutrophilic polymorphonuclear leukocyte, vol.89, pp.3503-3521, 1997.

L. A. Marquez-curtis, A. Dobrowsky, J. Montano, A. R. Turner, J. Ratajczak et al., Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures, Br. J. Haematol, vol.115, pp.595-604, 2001.

C. Trocme, P. Gaudin, S. Berthier, C. Barro, P. Zaoui et al., Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9, J. Biol. Chem, vol.273, pp.20677-20684, 1998.

B. S. Weeks, H. W. Schnaper, M. Handy, E. Holloway, and H. K. Kleinman, Human T lymphocytes synthesize the 92 kDa type IV collagenase (gelatinase B), J. Cell Physiol, vol.157, pp.644-649, 1993.

A. M. Montgomery, H. Sabzevari, and R. A. Reisfeld, Production and regulation of gelatinase B by human t-cells, Biochim. Biophys. Acta, vol.1176, pp.265-268, 1993.

O. Fuchs, Transcription factor NF-?b inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies, Curr. Mol. Pharmacol, vol.3, pp.98-122, 2010.

L. Pleyer, A. Egle, T. N. Hartmann, and R. Greil, Molecular and cellular mechanisms of CLL: Novel therapeutic approaches, Nat. Rev. Clin. Oncol, vol.6, pp.405-418, 2009.

A. S. Kamiguti, E. S. Lee, K. J. Till, R. J. Harris, M. A. Glenn et al., The role of matrix metalloproteinase 9 in the pathogenesis of chronic lymphocytic leukaemia, Br. J. Haematol, vol.125, pp.128-140, 2004.

S. Molica, G. Vitelli, D. Levato, D. Giannarelli, A. Vacca et al., Increased serum levels of matrix metalloproteinase-9 predict clinical outcome of patients with early B-cell chronic lymphocytic leukaemia, Eur. J. Haematol, vol.70, pp.373-378, 2003.

S. Aref, O. Salama, S. Shamaa, M. El-refaie, and H. Mourkos, Angiogenesis factor pattern differs in acute lymphoblastic leukemia and chronic lymphocytic leukemia, Hematology, vol.12, pp.319-324, 2007.

P. Van-vlierberghe and A. Ferrando, The molecular basis of T cell acute lymphoblastic leukemia, J. Clin. Invest, vol.122, pp.3398-3406, 2012.

O. Kuittinen, E. R. Savolainen, P. Koistinen, M. Mottonen, and T. Turpeenniemi-hujanen, MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (all)

, Leuk. Res, vol.25, pp.125-131, 2001.

T. Hayashibara, Y. Yamada, Y. Onimaru, C. Tsutsumi, S. Nakayama et al., Matrix metalloproteinase-9 and vascular endothelial growth factor: A possible link in adult T-cell leukaemia cell invasion, Br. J. Haematol, vol.116, pp.94-102, 2002.

L. I. Lin, D. T. Lin, C. J. Chang, C. Y. Lee, J. L. Tang et al., Marrow matrix metalloproteinases (mmps) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia, Br. J. Haematol, vol.117, pp.835-841, 2002.

J. G. Kim, S. K. Sohn, D. H. Kim, J. H. Baek, N. Y. Lee et al., Clinical implications of angiogenic factors in patients with acute or chronic leukemia: Hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia, Leuk. Lymphoma, vol.46, pp.885-891, 2005.

M. Krawczuk-rybak, M. Kuzmicz, B. Mroczko, and M. Szmitkowski, Plasma matrix metalloproteinases MMP-2 and MMP-9 and tissue inhibitors TIMP-1 and TIMP-2 in children treated for acute lymphoblastic leukemia, Pol. Merkur. Lekarski, vol.29, pp.14-18, 2010.

M. Piedfer, D. Dauzonne, R. Tang, J. N'guyen, C. Billard et al., Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells, FASEB J, vol.25, pp.2831-2842, 2011.

A. Laouar, C. Villiers, J. Sanceau, C. Maison, M. Colomb et al., Inactivation of interleukin-6 in vitro by monoblastic U937 cell plasma membranes involves both protease and peptidyl-transferase activities, Eur. J. Biochem, vol.215, pp.825-831, 1993.

B. A. Burke, M. Carroll, and . Bcr-abl, A multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia, Leukemia, vol.24, pp.1105-1112, 2010.

D. Bixby and M. Talpaz, Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia, Leukemia, vol.25, pp.7-22, 2011.

A. Bisen and D. F. Claxton, Tyrosine kinase targeted treatment of chronic myelogenous leukemia and other myeloproliferative neoplasms, Adv. Exp. Med. Biol, vol.779, pp.179-196, 2013.

C. Ries, F. Loher, C. Zang, M. G. Ismair, and P. E. Petrides, Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes, Clin. Cancer Res, vol.5, pp.1115-1124, 1999.

A. Janowska-wieczorek, M. Majka, L. Marquez-curtis, J. A. Wertheim, A. R. Turner et al., BCR-ABL-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in matrigel implants, Leukemia, vol.16, pp.1160-1166, 2002.

Y. Kaneta, Y. Kagami, T. Tsunoda, R. Ohno, Y. Nakamura et al., Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray, Int. J. Oncol, vol.23, pp.681-691, 2003.

X. Leng, H. Lin, T. Ding, Y. Wang, Y. Wu et al., Lipocalin 2 is required for BCR-ABL-induced tumorigenesis, Oncogene, vol.27, pp.6110-6119, 2008.

C. Villalva, N. Sorel, M. L. Bonnet, J. Guilhot, C. Mayeur-rousse et al., Neutrophil gelatinase-associated lipocalin expression in chronic myeloid leukemia, Leuk. Lymphoma, vol.49, pp.984-988, 2008.

A. Alonci, A. Allegra, S. Russo, G. Penna, G. Bellomo et al., Imatinib mesylate therapy induces reduction in neutrophil gelatinase-associated lipocalin serum levels and increase in leptin concentrations in chronic myeloid leukemia patients in molecular remission, Acta Haematol, vol.127, pp.1-6, 2012.

T. Meenaghan, M. Dowling, and M. Kelly, Acute leukaemia: Making sense of a complex blood cancer, Br. J. Nurs, vol.21, pp.78-83, 2012.

R. Swords, C. Freeman, and F. Giles, Targeting the fms-like tyrosine kinase 3 in acute myeloid leukemia, Leukemia, vol.26, pp.2176-2185, 2012.

C. Billard, F. Merhi, and B. Bauvois, Mechanistic insights into the antileukemic activity of hyperforin, Curr. Cancer Drug Targets, vol.13, pp.1-10, 2013.

S. Aref, M. El-sherbiny, M. Mabed, A. Menessy, and M. El-refaei, Urokinase plasminogen activator receptor and soluble matrix metalloproteinase-9 in acute myeloid leukemia patients: A possible relation to disease invasion, Hematology, vol.8, pp.385-391, 2003.

W. C. Yang, P. M. Lin, M. Y. Yang, Y. C. Liu, C. S. Chang et al., Higher lipocalin 2 expression may represent an independent favorable prognostic factor in cytogenetically normal acute myeloid leukemia, Leuk. Lymphoma, vol.54, pp.1614-1625, 2013.

Y. St-pierre, J. Couillard, and C. Van-themsche, Regulation of MMP-9 gene expression for the development of novel molecular targets against cancer and inflammatory diseases, Expert Opin. Ther. Targets, vol.8, pp.473-489, 2004.

S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, vol.140, pp.883-899, 2010.

P. Allavena, A. Sica, G. Solinas, C. Porta, and A. Mantovani, The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages, Crit. Rev. Oncol. Hematol, vol.66, pp.1-9, 2008.

B. B. Aggarwal, S. Shishodia, S. K. Sandur, M. K. Pandey, and G. Sethi, Inflammation and cancer: How hot is the link?, Biochem. Pharmacol, vol.72, pp.1605-1621, 2006.

B. C. Sheu, S. M. Hsu, H. N. Ho, H. C. Lien, S. C. Huang et al., A novel role of metalloproteinase in cancer-mediated immunosuppression, Cancer Res, vol.61, pp.237-242, 2001.

S. Agrawal, P. Anderson, M. Durbeej, N. Van-rooijen, F. Ivars et al., Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis, J. Exp. Med, vol.203, pp.1007-1019, 2006.

R. Fridman, M. Toth, I. Chvyrkova, S. O. Meroueh, and S. Mobashery, Cell surface association of matrix metalloproteinase-9 (gelatinase B), Cancer Metastasis Rev, vol.22, pp.153-166, 2003.

P. E. Van-den-steen, I. Van-aelst, V. Hvidberg, H. Piccard, P. Fiten et al., The hemopexin and o-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors, J. Biol. Chem, vol.281, pp.18626-18637, 2006.

B. Bauvois, New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression, Biochim. Biophys. Acta, vol.1825, pp.29-36, 2012.

A. G. Buggins, A. Levi, S. Gohil, K. Fishlock, P. E. Patten et al., Evidence for a macromolecular complex in poor prognosis cll that contains CD38, CD49d, CD44 and MMP-9, Br. J. Haematol, vol.154, pp.216-222, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640630

Y. Hu and L. B. Ivashkiv, Costimulation of chemokine receptor signaling by matrix metalloproteinase-9 mediates enhanced migration of ifn-alpha dendritic cells, J. Immunol, vol.176, pp.6022-6033, 2006.

M. Stefanidakis, T. Ruohtula, N. Borregaard, C. G. Gahmberg, and E. Koivunen, Intracellular and cell surface localization of a complex between ?m?2 integrin and promatrix metalloproteinase-9 progelatinase in neutrophils, J. Immunol, vol.172, pp.7060-7068, 2004.

J. Redondo-munoz, E. Ugarte-berzal, M. J. Terol, P. E. Van-den-steen, M. Hernandez-del-cerro et al., Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia B cell survival through its hemopexin domain, Cancer Cell, vol.17, pp.160-172, 2010.

R. E. Miller, J. D. Fayen, S. Chakraborty, M. C. Weber, and M. L. Tykocinski, A receptor for the lipocalin placental protein 14 on human monocytes, FEBS Lett, vol.436, pp.455-460, 1998.

W. K. Fang, L. Y. Xu, X. F. Lu, L. D. Liao, W. J. Cai et al., A novel alternative spliced variant of neutrophil gelatinase-associated lipocalin receptor in oesophageal carcinoma cells, Biochem. J, vol.403, pp.297-303, 2007.

V. Hvidberg, C. Jacobsen, R. K. Strong, J. B. Cowland, S. K. Moestrup et al., The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake, FEBS Lett, vol.579, pp.773-777, 2005.

P. Devarajan, Neutrophil gelatinase-associated lipocalin: New paths for an old shuttle. Cancer Ther, vol.5, pp.463-470, 2007.

Z. Tong, X. Wu, D. Ovcharenko, J. Zhu, C. S. Chen et al., Neutrophil gelatinase-associated lipocalin as a survival factor, Biochem. J, vol.391, pp.441-448, 2005.

L. Hu, W. Hittelman, T. Lu, P. Ji, R. Arlinghaus et al., Ngal decreases e-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells, vol.89, pp.531-548, 2009.

C. Nuntagowat, K. Leelawat, and R. Tohtong, Ngal knockdown by sirna in human cholangiocarcinoma cells suppressed invasion by reducing ngal/mmp-9 complex formation, Clin. Exp. Metastasis, vol.27, pp.295-305, 2010.

C. A. Fernandez, L. Yan, G. Louis, J. Yang, J. L. Kutok et al., The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients, Clin. Cancer Res, vol.11, pp.5390-5395, 2005.

E. K. Lee, H. J. Kim, K. J. Lee, H. J. Lee, J. S. Lee et al., Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/AKT signaling, Int. J. Oncol, vol.38, pp.325-333, 2011.

Z. Tong, A. B. Kunnumakkara, H. Wang, Y. Matsuo, P. Diagaradjane et al., Neutrophil gelatinase-associated lipocalin: A novel suppressor of invasion and angiogenesis in pancreatic cancer, Cancer Res, vol.68, pp.6100-6108, 2008.

P. Bahmani, R. Halabian, M. Rouhbakhsh, A. M. Roushandeh, N. Masroori et al., Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones, vol.15, pp.395-403, 2010.

W. H. Chappell, S. L. Abrams, G. Montalto, M. Cervello, A. M. Martelli et al., Effects of ectopic expression of NGAL on doxorubicin sensitivity, Oncotarget, vol.3, pp.1236-1245, 2012.

L. H. Wang, G. Q. Chang, H. J. Zhang, J. Wang, Y. N. Lin et al., Neutrophil gelatinase-associated lipocalin regulates intracellular accumulation of Rh123 in cancer cells, Genes Cells, vol.17, pp.205-217, 2012.

K. Krysan, X. Cui, B. K. Gardner, K. L. Reckamp, X. Wang et al., Elevated neutrophil gelatinase-associated lipocalin contributes to erlotinib resistance in non-small cell lung cancer, Am. J. Transl. Res, vol.5, pp.481-496, 2013.

F. J. Kubben, C. F. Sier, L. J. Hawinkels, H. Tschesche, W. Van-duijn et al., Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer, Eur. J. Cancer, vol.43, pp.1869-1876, 2007.

T. Hiromoto, K. Noguchi, M. Yamamura, Y. Zushi, E. Segawa et al., Up-regulation of neutrophil gelatinase-associated lipocalin in oral squamous cell carcinoma: Relation to cell differentiation, Oncol. Rep, vol.26, pp.1415-1421, 2011.

V. Volpe, Z. Raia, L. Sanguigno, D. Somma, P. Mastrovito et al., NGAL controls the metastatic potential of anaplastic thyroid carcinoma cells, J. Clin. Endocrinol. Metab, vol.98, pp.228-235, 2013.

H. Tschesche, V. Zolzer, S. Triebel, and S. Bartsch, The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases, Eur. J. Biochem, vol.268, pp.1918-1928, 2001.

L. Yan, N. Borregaard, L. Kjeldsen, and M. A. Moses, The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL, J. Biol. Chem, vol.276, pp.37258-37265, 2001.

H. J. Lee, E. K. Lee, K. J. Lee, S. W. Hong, Y. Yoon et al., Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells, J. Int. Cancer, vol.118, pp.2490-2497, 2006.

G. A. Bannikov, T. V. Karelina, I. E. Collier, B. L. Marmer, and G. I. Goldberg, Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide, J. Biol. Chem, vol.277, pp.16022-16027, 2002.

N. Geurts, E. Martens, I. Van-aelst, P. Proost, G. Opdenakker et al., Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3, Biochemistry, vol.47, pp.2689-2699, 2008.

S. Barille, C. Akhoundi, M. Collette, M. P. Mellerin, M. J. Rapp et al., Metalloproteinases in multiple myeloma: Production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells, Blood, vol.90, pp.1649-1655, 1997.

T. Kelly, M. Borset, E. Abe, D. Gaddy-kurten, and R. D. Sanderson, Matrix metalloproteinases in multiple myeloma, Leuk. Lymphoma, vol.37, pp.273-281, 2000.

K. Sakata, M. Satoh, M. Someya, H. Asanuma, H. Nagakura et al., Expression of matrix metalloproteinase 9 is a prognostic factor in patients with non-Hodgkin lymphoma, Cancer, vol.100, pp.356-365, 2004.

I. Vande-broek, K. Asosingh, V. Allegaert, X. Leleu, T. Facon et al., Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: Evidence for a role of hepatocyte growth factor, Leukemia, vol.18, pp.976-982, 2004.

A. E. Kossakowska, S. J. Urbanski, and A. Janowska-wieczorek, Matrix metalloproteinases and their tissue inhibitors-expression, role and regulation in human malignant non-Hodgkin's lymphomas, Leuk. Lymphoma, vol.39, pp.485-493, 2000.

J. Li, C. Ji, H. Zheng, X. Fei, M. Zheng et al., Molecular cloning and characterization of a novel human gene containing 4 ankyrin repeat domains, Cell Mol. Biol. Lett, vol.10, pp.185-193, 2005.

M. Borrell-pages, J. C. Romero, O. Juan-babot, and L. Badimon, Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages, Eur. Heart J, vol.32, pp.2841-2850, 2011.

M. Stefanidakis and E. Koivunen, Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression, Blood, vol.108, pp.1441-1450, 2006.

M. K. Hertweck, F. Erdfelder, and K. A. Kreuzer, CD44 in hematological neoplasias, Ann. hematol, vol.90, pp.493-508, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00610424

C. Lopez-otin and L. M. Matrisian, Emerging roles of proteases in tumour suppression, Nat. Rev. Cancer, vol.7, pp.800-808, 2007.

G. Murphy and H. Nagase, Progress in matrix metalloproteinase research, Mol. Asp. Med, vol.29, pp.290-308, 2008.

M. Bjorklund, P. Heikkila, and E. Koivunen, Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion, J. Biol. Chem, vol.279, pp.29589-29597, 2004.

E. Mantuano, G. Inoue, X. Li, K. Takahashi, A. Gaultier et al., The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein, J. Neurosci, vol.28, pp.11571-11582, 2008.

A. Dufour, S. Zucker, N. S. Sampson, C. Kuscu, and J. Cao, Role of matrix metalloproteinase-9 dimers in cell migration: Design of inhibitory peptides, J. Biol. Chem, vol.285, pp.35944-35956, 2010.

E. Ugarte-berzal, E. Bailon, I. Amigo-jimenez, C. L. Vituri, M. H. Del-cerro et al., A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds ?4?1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells, J. Biol. Chem, vol.287, pp.27601-27613, 2012.