T. Meenaghan, M. Dowling, and M. Kelly, Acute leukaemia: making sense of a complex blood cancer, British journal of nursing, vol.21, issue.2, pp.78-83, 2012.

R. Swords, F. C. Giles, and F. , Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia, Leukemia, vol.26, issue.10, pp.2176-2185, 2012.

F. Briest, A. Berndt, J. Clement, K. Junker, F. Eggeling et al., Tumor-stroma interactions in tumorigenesis: lessons from stem cell biology, Frontiers in bioscience, vol.4, pp.1871-1887, 2012.

D. Spano and M. Zollo, Tumor microenvironment: a main actor in the metastasis process, Clin Exp Metastasis, vol.29, issue.4, pp.381-395, 2012.

B. Bauvois, Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis?, Oncogene, vol.23, issue.2, pp.317-329, 2004.

G. Murphy, The ADAMs: signalling scissors in the tumour microenvironment, Nat Rev Cancer, vol.8, issue.12, pp.929-941, 2008.

N. Rucci, P. Sanita, and A. Angelucci, Roles of metalloproteases in metastatic niche, Curr Mol Med, vol.11, issue.8, pp.609-622, 2011.

L. A. Shuman-moss, S. Jensen-taubman, and W. G. Stetler-stevenson, Matrix metalloproteinases: changing roles in tumor progression and metastasis. The American journal of pathology, vol.181, pp.1895-1899, 2012.

S. Mochizuki and Y. Okada, ADAMs in cancer cell proliferation and progression, Cancer Sci, vol.98, issue.5, pp.621-628, 2007.

J. Arribas and C. Esselens, ADAM17 as a therapeutic target in multiple diseases, Curr Pharm Des, vol.15, issue.20, pp.2319-2335, 2009.

T. Klein and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases, Amino Acids, vol.41, issue.2, pp.271-290, 2011.

K. Kessenbrock, V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, vol.141, issue.1, pp.52-67, 2010.

B. Bauvois, New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression, Biochim Biophys Acta-Reviews on Cancer, vol.1825, issue.1, pp.29-36, 2012.

B. Bauvois and D. Dauzonne, Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects, Med Res Rev, vol.26, issue.1, pp.88-130, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00323888

P. Mina-osorio, The moonlighting enzyme CD13: old and new functions to target, Trends Mol Med, vol.14, issue.8, p.361, 2008.

C. Antczak, D. Meester, I. Bauvois, and B. , Transmembrane proteases as disease markers and targets for therapy, J Biol Regul Homeost Agents, vol.15, issue.2, pp.130-139, 2001.

R. Roy, Y. J. Moses, and M. A. , Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer, J Clin Oncol, vol.27, issue.31, pp.5287-5297, 2009.

M. Wickstrom, R. Larsson, P. Nygren, and J. Gullbo, Aminopeptidase N (CD13) as a target for cancer chemotherapy, Cancer Sci, vol.102, issue.3, pp.501-508, 2011.

A. K. Chaudhary, S. Pandya, K. Ghosh, and A. Nadkarni, Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: An overview, Mutat Res, vol.753, issue.1, pp.7-23, 2013.

A. Janowska-wieczorek, L. A. Marquez, A. Matsuzaki, H. R. Hashmi, L. M. Larratt et al., Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells, Br J Haematol, vol.105, issue.2, pp.402-411, 1999.

G. Klein, E. Vellenga, M. W. Fraaije, K. Wa, and E. S. De-bont, The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia, Crit Rev Oncol Hematol, vol.50, issue.2, pp.87-100, 2004.

C. Ries, F. Loher, C. Zang, M. G. Ismair, and P. E. Petrides, Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes, Clin Cancer Res, vol.5, issue.5, pp.1115-1124, 1999.

H. Reikvam, K. J. Hatfield, A. M. Oyan, K. H. Kalland, A. O. Kittang et al., Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation, Eur J Haematol, vol.84, issue.3, pp.239-251, 2009.

C. Billard, F. Merhi, and B. Bauvois, Mechanistic insights into the antileukemic activity of hyperforin, Curr Cancer Drug Targets, vol.13, issue.1, pp.1-10, 2013.

M. Stefanidakis, K. Karjalainen, D. E. Jaalouk, C. G. Gahmberg, S. O'brien et al., Role of leukemia cell invadosome in extramedullary infiltration, Blood, vol.114, issue.14, pp.3008-3017, 2009.

L. I. Lin, D. T. Lin, C. J. Chang, C. Y. Lee, J. L. Tang et al., Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia, Br J Haematol, vol.117, issue.4, pp.835-841, 2002.

D. C. Taussig, D. J. Pearce, C. Simpson, A. Z. Rohatiner, T. A. Lister et al., Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia, Blood, vol.106, issue.13, pp.4086-4092, 2005.

M. Piedfer, D. Dauzonne, R. Tang, N. 'guyen, J. Billard et al., Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells, Faseb J, vol.25, issue.8, pp.2831-2842, 2011.

D. Obeid, J. Nguyen, P. Lesavre, and B. Bauvois, Differential regulation of tumor necrosis factor-alpha-converting enzyme and angiotensin-converting enzyme by type I and II interferons in human normal and leukemic myeloid cells, Oncogene, vol.26, issue.1, pp.102-110, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00126528

K. Kagawa, A. Nakano, H. Miki, A. Oda, H. Amou et al., Inhibition of TACE activity enhances the susceptibility of myeloma cells to TRAIL, PloS one, vol.7, issue.2, p.31594, 2012.

J. D. Griffin, J. Ritz, L. M. Nadler, and S. F. Schlossman, Expression of myeloid differentiation antigens on normal and malignant myeloid cells, J Clin Invest, vol.68, issue.4, pp.932-941, 1981.

E. J. Favaloro, CD-13 ('gp150'; aminopeptidase-N): coexpression on endothelial and haemopoietic cells with conservation of functional activity, Immunol Cell Biol, vol.69, pp.253-260, 1991.

E. J. Favaloro, K. F. Bradstock, A. Kabral, P. Grimsley, H. Zowtyj et al., Further characterization of human myeloid antigens (gp160,95; gp150; gp67): investigation of epitopic heterogeneity and non-haemopoietic distribution using panels of monoclonal antibodies belonging to CD-11b, CD-13 and CD-33, Br J Haematol, vol.69, issue.2, pp.163-171, 1988.

D. Dutta, C. D. Williamson, C. Nb, and J. G. Donaldson, Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis, PloS one, vol.7, issue.9, p.45799, 2012.

S. Aref, E. Osman, S. Mansy, N. Omer, E. Azmy et al., Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients, Hematological oncology, vol.25, issue.3, pp.121-126, 2007.

I. Rauch, M. Muller, and T. Decker, The regulation of inflammation by interferons and their STATs, Jak-Stat, vol.2, issue.1, p.23820, 2013.

M. Yamada, J. C. Gomez, P. E. Chugh, C. A. Lowell, M. C. Dinauer et al., Interferon-gamma production by neutrophils during bacterial pneumonia in mice, Am J Respir Crit Care Med, vol.183, issue.10, pp.1391-1401, 2011.

R. Audran, B. Drenou, F. Wittke, A. Gaudin, T. Lesimple et al., Internalization of human macrophage surface antigens induced by monoclonal antibodies, J Immunol Methods, vol.188, issue.1, pp.147-154, 1995.

S. Kumari, S. Mg, and S. Mayor, Endocytosis unplugged: multiple ways to enter the cell, Cell research, vol.20, issue.3, pp.256-275, 2010.

M. S. Marks, L. Woodruff, H. Ohno, and J. S. Bonifacino, Protein targeting by tyrosine-and di-leucine-based signals: evidence for distinct saturable components, The Journal of cell biology, vol.135, issue.2, pp.341-354, 1996.

J. R. Doedens and R. A. Black, Stimulation-induced downregulation of tumor necrosis factor-alpha converting www.impactjournals.com/oncotarget enzyme, J Biol Chem, vol.275, pp.14598-14607, 2000.

K. Horiuchi, T. Miyamoto, H. Takaishi, A. Hakozaki, N. Kosaki et al., Cell surface colony-stimulating factor 1 can be cleaved by TNF-alpha converting enzyme or endocytosed in a clathrin-dependent manner, J Immunol, vol.179, issue.10, pp.6715-6724, 2007.

T. Miki, Y. Takegami, K. Okawa, T. Muraguchi, M. Noda et al., The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways, J Biol Chem, vol.282, issue.16, pp.12341-12352, 2007.

A. D'alessio, B. Esposito, C. Giampietri, E. Ziparo, J. S. Pober et al., Plasma membrane microdomains regulate TACE-dependent TNFR1 shedding in human endothelial cells, Journal of cellular and molecular medicine, vol.16, issue.3, pp.627-636, 2012.

J. C. Clark, D. M. Thomas, P. F. Choong, and C. R. Dass, RECK--a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer, Cancer Metastasis Rev, vol.26, issue.3-4, pp.675-683, 2007.

K. J. Hong, D. C. Wu, K. H. Cheng, C. Lt, and W. C. Hung, RECK Inhibits Stemness Gene Expression and Tumorigenicity of Gastric Cancer Cells by Suppressing ADAM-Mediated Notch1 Activation, J Cell Physiol, vol.229, issue.2, pp.191-201, 2014.

P. L. Van-lent, P. N. Span, A. W. Sloetjes, T. R. Radstake, A. W. Van-lieshout et al., Expression and localisation of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis, Ann Rheum Dis, vol.64, issue.3, pp.368-374, 2005.

M. H. Wu, Y. Shoji, M. C. Wu, P. C. Chuang, C. C. Lin et al., Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. The American journal of pathology, vol.167, pp.1061-1069, 2005.

J. S. Rhee and L. M. Coussens, RECKing MMP function: implications for cancer development, Trends in cell biology, vol.12, issue.5, pp.209-211, 2002.

J. B. Helms and C. Zurzolo, Lipids as targeting signals: lipid rafts and intracellular trafficking, Traffic, vol.5, issue.4, pp.247-254, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00167026

T. Ishii, K. Ohnuma, A. Murakami, N. Takasawa, S. Kobayashi et al., CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO, Proc Natl Acad Sci, vol.98, issue.21, pp.12138-12143, 2001.

E. Tellier, M. Canault, L. Rebsomen, B. Bonardo, I. Juhan-vague et al., The shedding activity of ADAM17 is sequestered in lipid rafts, Exp Cell Res, vol.312, issue.20, pp.3969-3980, 2006.

R. V. Stan, W. G. Roberts, D. Predescu, K. Ihida, L. Saucan et al., Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae), Molecular biology of the cell, vol.8, issue.4, pp.595-605, 1997.

B. Von-tresckow, K. J. Kallen, E. P. Von-strandmann, P. Borchmann, H. Lange et al., Depletion of cellular cholesterol and lipid rafts increases shedding of CD30, J Immunol, vol.172, issue.7, pp.4324-4331, 2004.

K. W. Thiel and G. Carpenter, ErbB-4 and TNF-alpha converting enzyme localization to membrane microdomains, Biochem Biophys Res Commun, vol.350, issue.3, pp.629-633, 2006.

J. H. Lee, S. Wittki, T. Brau, F. S. Dreyer, K. Kratzel et al., HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases, Mol Cell, vol.49, issue.4, pp.668-679, 2013.

N. Santos, A. Roentsch, J. Danielsen, E. M. Langner, J. Riemann et al., Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes, Biochem Biophys Res Commun, vol.269, issue.1, pp.143-148, 2000.

E. Orso, T. Werner, Z. Wolf, S. Bandulik, W. Kramer et al., Ezetimib influences the expression of raftassociated antigens in human monocytes, Cytometry A, vol.69, issue.3, pp.206-208, 2006.

J. Pruessmeyer and A. Ludwig, The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer, Semin Cell Dev Biol, vol.20, issue.2, pp.164-174, 2009.

N. Reymond and A. J. Ridley, Crossing the endothelial barrier during metastasis, Nat Rev Cancer, vol.13, issue.12, pp.858-870, 2013.

D. Dreymueller, J. Pruessmeyer, E. Groth, and A. Ludwig, The role of ADAM-mediated shedding in vascular biology, European journal of cell biology, vol.91, issue.6-7, pp.472-485, 2012.

R. Romee, B. Foley, T. Lenvik, Y. Wang, B. Zhang et al., NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17), Blood, vol.121, issue.18, pp.3599-3608, 2013.

L. Lajoie, C. , N. Bolzec, A. Gouilleux-gruart, V. Sicard et al., ADAM17-Mediated Shedding of FcgammaRIIIA on Human NK Cells: Identification of the Cleavage Site and Relationship with Activation, J Immunol, vol.192, issue.2, pp.741-751, 2014.

A. Wiernik, B. Foley, B. Zhang, M. R. Verneris, E. Warlick et al., Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition, Clin Cancer Res, vol.19, issue.14, pp.3844-3855, 2013.

M. Lanotte, V. Martin-thouvenin, S. Najman, P. Balerini, F. Valensi et al., NB4, a maturation inducible cell www.impactjournals.com/oncotarget line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3), Blood, vol.77, issue.5, pp.1080-1086, 1991.

A. Laouar, C. Villiers, J. Sanceau, C. Maison, M. Colomb et al., Inactivation of interleukin-6 in vitro by monoblastic U937 cell plasma membranes involves both protease and peptidyl-transferase activities, Eur J Biochem, vol.215, issue.3, pp.825-831, 1993.

B. Bauvois, L. Durant, J. Laboureau, E. Barthelemy, D. Rouillard et al., Upregulation of CD38 gene expression in leukemic B cells by interferon types I and II, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, vol.19, issue.9, pp.1059-1066, 1999.

C. Trocme, P. Gaudin, S. Berthier, C. Barro, P. Zaoui et al., Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9, J Biol Chem, vol.273, issue.32, pp.20677-20684, 1998.

U. Lendeckel, T. Kahne, D. Riemann, K. Neubert, M. Arndt et al., Review: the role of membrane peptidases in immune functions, Adv Exp Med Biol, vol.477, pp.1-24, 2000.

M. Satoh, M. Nakamura, H. Satoh, H. Saitoh, I. Segawa et al., Expression of tumor necrosis factor-alpha--converting enzyme and tumor necrosis factor-alpha in human myocarditis, J Am Coll Cardiol, vol.36, issue.4, pp.1288-1294, 2000.

B. Bauvois, J. Dumont, C. Mathiot, and J. P. Kolb, Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons, Leukemia, vol.16, issue.5, pp.791-798, 2002.

C. Munaut, A. Noel, O. Hougrand, J. M. Foidart, J. Boniver et al., Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas, Int J Cancer, vol.106, issue.6, pp.848-855, 2003.

J. Sanceau, J. Hiscott, O. Delattre, and J. Wietzerbin, IFNbeta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7, Oncogene, vol.19, issue.30, pp.3372-3383, 2000.