A. Fabiato and J. , Gen. Physiol, vol.85, p.259, 1985.

L. Barcenas-ruiz and W. G. Wier, Circ. Res, vol.61, p.148, 1987.

M. Nä-bauer, G. Callewaert, L. Cleemann, and M. Morad, Science, vol.244, p.800, 1989.

D. M. Bers, Excitation-Contraction Coupling and Cardiac Contractile Force (Kluwer, Dordrecht, 1991.

M. B. Cannell, J. R. Berlin, and W. J. Lederer, Science, vol.238, p.1419, 1987.

W. H. and S. R. Houser, Am. J. Physiol, vol.257, p.746, 1989.

E. Niggli and W. J. Lederer, Science, vol.250, p.565, 1990.

C. Franzini-armstrong and F. Protasi, Physiol. Rev, vol.77, p.699, 1997.

H. H. Valdivia, J. H. Kaplan, G. C. Ellis-davies, and W. J. Lederer, Science, vol.267, 1995.

C. Soeller and M. B. Cannell, Biophys. J, vol.73, p.97, 1997.

M. B. Cannell and C. Soeller, , p.112

H. Cheng, W. J. Lederer, and M. B. Cannell, Science, vol.262, p.740, 1993.

M. B. Cannell, H. Cheng, and W. J. Lederer, , vol.268, p.1045, 1995.

, Biophys. J, vol.67, p.1942, 1994.

, J. Physiol, vol.477, p.25, 1994.

H. Cheng, M. B. Cannell, and W. J. Lederer, Circ. Res, vol.76, p.236, 1995.

P. S. Shacklock, W. G. Wier, and C. W. ,

. Balke, J. Physiol, vol.487, p.601, 1995.

J. R. Ló-pez-ló-pez, P. S. Shacklock, C. W. Balke, and W. G. Wier, Science, vol.268, p.1042, 1995.

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, Am. J. Physiol, vol.270, p.148, 1996.

H. Cheng, Cell Calcium, vol.20, p.129, 1996.

L. F. Santana, H. Cheng, A. M. Gó-mez, M. B. Cannell, and W. J. Lederer, Circ. Res, vol.78, p.166, 1996.

A. M. Gó, Science, vol.275, p.800, 1997.

N. Leblanc and J. R. Hume, Science, vol.248, p.372, 1990.

W. J. Lederer, E. Niggli, and R. W. Hadley,

J. R. Hume, P. C. Levesque, and N. Leblanc, , vol.251, p.1370, 1991.

W. J. Lederer, E. Niggli, and R. W. ,

. A. Hadley, K. W. Levi, O. Spitzer, J. H. Kohmoto, and . Bridge, Am. J. Physiol, vol.266, p.1422, 1994.

O. Kohmoto, A. J. Levi, and J. H. Bridge, Circ. Res, vol.74, p.550, 1994.

P. C. Levesque, N. Leblanc, and J. R. Hume, Cardiovasc. Res, vol.28, p.370, 1994.

P. Lipp and E. Niggli, J. Physiol, vol.474, p.439, 1994.

J. C. Hancox and A. J. Levi, Pfluegers Arch, vol.430, p.887, 1995.

A. M. Vites and J. A. Wasserstrom, Ann. N.Y. Acad. Sci, vol.779, p.521, 1996.

J. A. Wasserstrom and A. M. Vites, J. Physiol, vol.493, p.529, 1996.

C. J. Grantham and M. B. Cannell, Circ. Res, vol.79, p.194, 1996.

S. E. Howlett, J. Zhu, and G. R. Ferrier, Am. J. Physiol. (Heart), vol.43, p.155, 1998.

A. J. Levi, Biophys. J, vol.72, p.161, 1997.

S. E. Howlett, G. R. Ferrier, and C. ,

I. Mapplebeck, . R. A161;-g, C. A. Ferrier, . A. Mason, S. E. Zhu et al., , p.161

A. J. Levi and G. R. Ferrier, , p.161

I. A. Hobai, Pfluegers Arch, vol.435, p.164, 1997.

J. S. Sham, L. Cleemann, and M. Morad, Science, vol.255, p.850, 1992.

W. J. Lederer, Heart Vessels Suppl, vol.9, p.161, 1995.

E. M. Evans and M. B. Cannell, Cardiovasc. Res, vol.34, p.294, 1997.

M. F. Schneider and W. K. Chandler, Nature, vol.242, p.244, 1973.

S. M. Baylor, S. Hollingworth, M. Konishi, and P. C. Pape, Biophys. J, vol.57, 1990.

A. Tsugorka, E. Rios, and L. A. Blatter, Science, vol.269, p.1723, 1995.

M. G. Klein, Nature, vol.379, p.455, 1996.

D. L. See, W. R. Campbell, J. R. Giles, D. Hume, E. F. Noble et al., Because the zero current potential of I Ca is normally close to ?60 mV, a potential 70 mV away from the Nernst potential for Ca 2? (E Ca ) of ?130 mV, there may be net Ca 2? influx when the Ca 2? current is zero or outward, J. Physiol, vol.403, issue.14, 1988.

, PKA does alter single-Na ? channel kinetics, but effects on ion selectivity have not been reported, Circ. Res, vol.70, p.199, 1992.

K. Ono, H. A. Fozzard, and D. A. Hanck, Pfluegers Arch, vol.429, p.561, 1995.

B. J. Murphy, J. Rogers, A. P. Perdichizzi, A. A. Colvin, and W. A. , Catterall, J. Biol. Chem, vol.271, p.28837, 1996.

W. Schreibmayer, Recept. Channels, vol.2, p.339, 1994.

R. J. French, J. F. Worley, I. , W. F. Wonderlin, A. Kularatna et al., J. Gen. Physiol, vol.103, p.447, 1994.

L. Schild and E. Moczydlowski, Biophys. J, vol.66, p.654, 1994.

C. M. Armstrong and G. Cota, Proc. Natl. Acad. Sci. U.S.A, vol.88, p.6528, 1991.

B. Nilius, J. Physiol, vol.399, p.537, 1988.

D. Gordon, D. Merrick, D. A. Wollner, and W. A. Catterall, Biochemistry, vol.27, p.7032, 1988.

R. B. Rogart, Proc. Natl. Acad. Sci. U.S.A, vol.86, p.8170, 1989.

M. ,

J. E. Costa, W. A. Casnellie, and . Catterall, J. Biol. Chem, vol.257, p.7918, 1982.

S. Rossie and W. A. Catterall, , p.12735, 1987.

F. Conti, A. Gheri, M. Pusch, and O. Moran, Biophys. J, vol.71, p.1295, 1996.

J. A. Talvenheimo, M. M. Tamkun, and W. A. Catterall, J. Biol. Chem, vol.257, p.11868, 1982.

T. Gonoi, S. J. Sherman, and W. A. Catterall, J. Neurosci, vol.5, p.2559, 1985.

G. F. Tomaselli, Biophys. J, vol.68, p.1814, 1995.

R. Dumaine and H. A. Artmann, Am. J. Physiol, vol.270, p.2029, 1996.

C. Frelin, C. Cognard, P. Vigne, and M. Lazdunski, Eur. J. Pharmacol, vol.122, p.245, 1986.

N. Yoshimura, G. White, F. F. Weight, and W. C. Degroat, J. Physiol. 494, vol.1, p.1, 1996.

S. H. Heinemann, H. Terlau, W. Stuhmer, K. Imoto, and S. Numa, Nature, vol.356, p.441, 1992.

S. H. Heinemann, T. Schlief, Y. Mori, K. Imoto, and . Braz, J. Med. Biol. Res, vol.27, p.2781, 1994.

T. Schlief, R. Schonherr, K. Imoto, and S. H. Heinemann, Eur. Biophys. J, vol.25, p.75, 1996.

J. Satin, J. T. Limberis, J. W. Kyle, R. B. Rogart, and H. A. Fozzard, Biophys. J, vol.67, p.1007, 1994.

G. M. Lipkind and H. A. Fozzard, ibid, vol.66, p.1, 1994.

I. Favre, E. Moczydlowski, and L. Schild, , vol.71, p.3110, 1996.

R. G. Tsushima, R. A. Li, and P. H. Backx, J. Gen. Physiol, vol.110, p.59, 1997.

R. G. Tsushima, R. A. Li, and P. H. Backx, , p.463, 1997.

S. Chen, H. A. Hartman, and G. E. Kirsch, J. Membr. Biol, vol.155, p.11, 1997.

M. T. Pé-rez-garcía, Biophys. J, vol.72, p.989, 1997.

N. Chiamvimonvat, M. T. Pé-rez-garcía, G. F. Tomaselli, and E. Marban, J. Physiol. 491, vol.1, p.51, 1996.

T. Yamagishi, M. Janecki, E. Marban, and G. F. Tomaselli, Biophys. J, vol.73, p.195, 1997.

J. P. Bé, }. Thus, the observed positive shifts in the reversal potential of the PKA-and CTS-modified Na ? channels indicate that these Na ? channels developed an increased P Ca . We found that P Ca /P Na ? 1.25 and P Ca /P Na ? 1.45 after the activation of slipmode conductance by PKA or CTS treatment, respectively. As expected, the removal of extracellular Ca 2? largely returns the reversal potential to E Na . Application of T T X in the maintained presence of slip-mode conductance activation and of 2 mM [Ca 2? ] o also returns the reversal potentials to zero mV. This last observation suggests that slip-mode conductance is more sensitive to T T X than is normal-mode conductance, The normal sodium channel (unmodified by PKA activation or CTS treatment) had a measured reversal potential shown in Figs. 2C and 3C at E Na (that is, 0 mV ), vol.22, p.603, 1988.

P. Lipp and E. Niggli, J. Physiol, vol.492, p.31, 1996.

J. C. Makielski, M. F. Sheets, D. A. Hanck, C. T. January, and H. A. Fozzard, Biophys. J, vol.52, p.1, 1987.

J. Jurevicius and R. Fischmeister, Proc. Natl. Acad. Sci. U.S.A, vol.93, p.295, 1996.

T. Vorherr, M. Chiesi, R. Schwaller, and E. Carafoli, Biochemistry, vol.31, p.371, 1992.

H. Cheng, J. Biol. Chem, vol.261, p.989, 1986.

G. P. Rossi, J. Hypertens, vol.13, p.1181, 1995.

J. M. Hamlyn, Proc. Natl. Acad. Sci. U.S.A, vol.88, p.6259, 1991.

J. Laredo, B. P. Hamilton, and J. M. Hamlyn, Endocrinology, vol.135, p.794, 1994.

J. Laredo, J. R. Shah, Z. R. Lu, and B. P. Hamilton, Hypertension, vol.29, p.401, 1997.

J. M. Hamlyn, B. P. Hamilton, and P. Manunta, J. Hypertens, vol.14, p.151, 1996.

M. P. Blaustein, Kidney Int, vol.49, p.1748, 1996.

H. E. De-wardner and J. , Hypertens, vol.14, p.9, 1996.

P. F. Baker, M. P. Blaustein, A. L. Hodgkin, and R. A. Steinhardt, J. Physiol, vol.200, p.431, 1969.

J. W. Deitmer, D. Ellis, ;. U. Gundert-remy, and E. Weber, If the K d values determined from an ox brain preparation apply to heart, then this concentration of strophanthidin that does nothing to increase, Cardiac Glycosides, Part 1, K. Greeff, vol.284, pp.83-113, 1978.

, Comparison of the efficacy of CTS concentration on Na ? ,K ? -ATPase activity is not simple. Reports on the assessment of concentrations of CTS for halfmaximal inhibition do not always provide enough relevant information

T. See, ;. Akera, and E. Greeff, Cardiac Glycosides, Part 1, pp.287-336, 1981.

, K d values for ouabain inhibition of heart Na ? ,K ? -ATPase range from 1 nM to about 50 M; this is due in part to methodological differences and to the existence of three ? subunits that bind ouabain, with different affinities for ouabain and different species distributions

, Na ? ,K ? -ATPase, but in rat heart only ?1 and ?2 are present. (?1 and ?2 have a similar affinity for Na ? , but the affinity of ?3 is one-third as great, Acta Physiol. Scand

, Nevertheless, nanomolar quantities of ouabain or other CTSlike digoxin provide both inotropic and toxic actions, vol.310, pp.re- spectively, 1994.

T. Akasu, Y. Ohta, and K. Koketsu, Jpn. Heart J, vol.18, p.860, 1977.

T. Godfraind, J. Ghysel-burton, and A. D. Pover, Nature, vol.299, p.824, 1982.

D. C. Gadsby, Annu. Rev. Biophys. Bioeng, vol.13, p.1063, 1984.

H. Meves and W. Vogel, J. Physiol, vol.235, p.226, 1973.

P. F. Baker, A. L. Hodgkin, and E. B. Ridgway, , vol.218, p.709, 1971.

E. A. Johnson and R. D. Lemieux, Science, vol.251, p.1370, 1991.

N. Akaike and K. Takahashi, J. Physiol, vol.450, p.529, 1992.

S. Lemaire, C. Piot, J. Seguin, J. Nargeot, and S. Richard, Recept. Channels, vol.3, p.71, 1995.

W. C. Cole, D. Chartier, M. Martin, and N. Leblanc, Am. J. Physiol, vol.273, p.128, 1997.

R. Aggarwal, S. R. Shorofsky, L. Goldman, and C. W. Balke, J. Physiol, vol.505, p.353, 1997.

L. A. Sorbera and M. Morad, Science, vol.247, p.969, 1990.

M. F. Sheets and D. A. Hanck, , vol.252, p.449, 1991.

L. F. Santana, A. Gó-mez, and W. J. Lederer,

, Because the effects of CTSs were examined in the absence of intracellular Na ? , variation in Na ? pump activity cannot account for the CTS-dependent Ca 2? signaling. Instead, the Na ? ,K ? -ATPase may act as a CTS receptor with the Na ? channel acting as the target protein, The Na ? ,K ? -ATPase is the only identified high-affinity ligand for CTSs

, Some of the experiments presented in this paper use conditions that are quite stressful for heart cells. Data for this and subsequent figures were taken only from cells that maintained normal morphology and showed no signs of SR Ca 2? overload (that is, spontaneous [Ca 2? ] i waves) throughout the duration of experiments. In those experiments in which it was required to expose cells to 0, Single rat heart cells were prepared by standard enzymatic methods

G. Ferrier, A. Levi, J. A. Wasserstrom, J. Hume, P. Lipp et al.,

, timore (UMAB) School of Medicine and UMAB Graduate School; and equipment support from the Medical Biotechnology

, REPORTS www.sciencemag.org ? SCIENCE ?, vol.279, 1997.