V. Lennerz, The response of autologous T cells to a human melanoma is dominated by mutated neoantigens, Proc Natl Acad Sci U S A, vol.102, pp.16013-16018, 2005.

E. Tran, Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer, Science, vol.344, pp.641-645, 2014.

E. Tran, T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer, N Engl J Med, vol.375, pp.2255-2262, 2016.

A. Snyder, Genetic basis for clinical response to CTLA-4 blockade in melanoma, N Engl J Med, vol.371, pp.2189-2199, 2014.

J. E. Rosenberg, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet, vol.387, 1909.

U. Sahin and O. Tureci, Personalized vaccines for cancer immunotherapy, Science, vol.359, pp.1355-1360, 2018.

Z. Hu, P. A. Ott, and C. J. Wu, Towards personalized, tumour-specific, therapeutic vaccines for cancer, Nat Rev Immunol, vol.18, pp.168-182, 2018.

M. Yadav, Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing, Nature, vol.515, pp.572-576, 2014.

S. Kreiter, Mutant MHC class II epitopes drive therapeutic immune responses to cancer, Nature, vol.520, pp.692-696, 2015.

P. A. Ott, An immunogenic personal neoantigen vaccine for patients with melanoma, Nature, vol.547, pp.217-221, 2017.

U. Sahin, Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer, Nature, vol.547, pp.222-226, 2017.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.348, pp.69-74, 2015.

N. K. Mehta, K. D. Moynihan, and D. J. Irvine, Engineering New Approaches to Cancer Vaccines, Cancer Immunol Res, vol.3, pp.836-843, 2015.

M. L. Bookstaver, S. J. Tsai, J. S. Bromberg, and C. M. Jewell, Improving Vaccine and Immunotherapy Design Using Biomaterials, Trends Immunol, vol.39, pp.135-150, 2018.

L. Scheetz, Engineering patient-specific cancer immunotherapies, Nat Biomed Eng, vol.3, pp.768-782, 2019.

P. O. Ilyinskii, Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release, Vaccine, vol.32, pp.2882-2895, 2014.

E. M. Varypataki, Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles, Journal of controlled release : official journal of the Controlled Release Society, vol.226, pp.98-106, 2016.

R. Kuai, L. J. Ochyl, K. S. Bahjat, A. Schwendeman, and J. J. Moon, Designer vaccine nanodiscs for personalized cancer immunotherapy, Nat Mater, vol.16, pp.489-496, 2017.

E. A. Scott, Dendritic cell activation and T cell priming with adjuvant-and antigenloaded oxidation-sensitive polymersomes, Biomaterials, vol.33, pp.6211-6219, 2012.

C. B. Fox and J. Haensler, An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants, Expert review of vaccines, vol.12, pp.747-758, 2013.

H. Liu, Structure-based programming of lymph-node targeting in molecular vaccines, Nature, vol.507, pp.519-522, 2014.

H. I. Cho, K. Barrios, Y. R. Lee, A. K. Linowski, and E. Celis, BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8

T. Responses, Cancer Immunol Immunother, vol.62, pp.787-799, 2013.

B. J. Ignacio, T. J. Albin, A. P. Esser-kahn, and M. Verdoes, Toll-like Receptor Agonist Conjugation: A Chemical Perspective, Bioconjug Chem, vol.29, pp.587-603, 2018.

G. G. Zom, Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates, Cancer Immunol Res, vol.2, pp.756-764, 2014.

B. L. Lu, G. M. Williams, D. J. Verdon, P. R. Dunbar, and M. A. Brimble, Synthesis and Evaluation of Novel TLR2 Agonists as Potential Adjuvants for Cancer Vaccines, J Med Chem, 2019.

G. Zhu, Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy, Nat Commun, vol.8, 1954.

P. Nair-gupta, TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation, Cell, vol.158, pp.506-521, 2014.

U. Wille-reece, HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates, Proc Natl Acad Sci U S A, vol.102, pp.15190-15194, 2005.

Y. Hailemichael, Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion, Nature medicine, vol.19, pp.465-472, 2013.

G. G. Kenter, Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia, N Engl J Med, vol.361, pp.1838-1847, 2009.

C. Melief, Peptide-Based Therapeutic Cancer Vaccines, 2018.

S. Cavalli, F. Albericio, and A. Kros, Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience, Chem Soc Rev, vol.39, pp.241-263, 2010.

G. M. Lynn, In vivo characterization of the physicochemical properties of polymerlinked TLR agonists that enhance vaccine immunogenicity, Nat Biotechnol, vol.33, pp.1201-1210, 2015.

G. M. Lynn, Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction, Biomacromolecules, vol.20, pp.854-870, 2019.

R. L. Coffman, A. Sher, and R. A. Seder, Vaccine adjuvants: putting innate immunity to work, Immunity, vol.33, issue.10, pp.362-368

S. T. Reddy, A. Rehor, H. G. Schmoekel, J. A. Hubbell, and M. A. Swartz, In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles, Journal of controlled release : official journal of the Controlled Release Society, vol.112, pp.26-34, 2006.

V. Manolova, Nanoparticles target distinct dendritic cell populations according to their size, Eur J Immunol, vol.38, pp.1404-1413, 2008.

L. Nuhn, pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation, Proc Natl Acad Sci U S A, vol.113, pp.8098-8103, 2016.

N. M. Shukla, S. S. Malladi, C. A. Mutz, R. Balakrishna, and S. A. David, Structureactivity relationships in human toll-like receptor 7-active imidazoquinoline analogues, J Med Chem, vol.53, pp.4450-4465, 2010.

D. S. Wilson, Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity, Nat Mater, vol.18, pp.175-185, 2019.

J. P. Vasilakos and M. A. Tomai, The use of Toll-like receptor 7/8 agonists as vaccine adjuvants, Expert review of vaccines, vol.12, pp.809-819, 2013.

A. Liaw and M. Wiener, Classification and Regression by randomForest, R News, vol.2, pp.18-22, 2002.

Y. Choe, Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities, J Biol Chem, vol.281, pp.12824-12832, 2006.

P. M. Kloetzel, Antigen processing by the proteasome, Nat Rev Mol Cell Biol, vol.2, pp.179-187, 2001.

J. C. Jewett and C. R. Bertozzi, Cu-free click cycloaddition reactions in chemical biology, Chem Soc Rev, vol.39, pp.1272-1279, 2010.

M. I. Van-poelgeest, Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance Is Related to the Strength of the T-Cell Response, Clin Cancer Res, vol.22, pp.2342-2350, 2016.

M. S. Bijker, Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation, Eur J Immunol, vol.38, pp.1033-1042, 2008.

M. Moutaftsi, A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus, Nat Biotechnol, vol.24, pp.817-819, 2006.

A. Rubinsteyn, Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial, Frontiers in immunology, vol.8, p.1807, 2017.

J. G. Abelin, Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction, Immunity, vol.46, pp.315-326, 2017.

E. A. Thompson and K. Lore, Non-human primates as a model for understanding the mechanism of action of toll-like receptor-based vaccine adjuvants, Curr Opin Immunol, vol.47, pp.1-7, 2017.

K. D. Moynihan, Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses, Nature medicine, vol.22, pp.1402-1410, 2016.

F. Qiu, Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines, Biomaterials, vol.182, pp.82-91, 2018.

A. W. Li, A facile approach to enhance antigen response for personalized cancer vaccination, Nat Mater, vol.17, pp.528-534, 2018.

J. Wendorf, A practical approach to the use of nanoparticles for vaccine delivery, J Pharm Sci, vol.95, pp.2738-2750, 2006.

L. M. Kranz, Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy, Nature, vol.534, pp.396-401, 2016.

H. Sultan, Designing therapeutic cancer vaccines by mimicking viral infections, Cancer Immunol Immunother, vol.66, pp.203-213, 2017.

G. M. Lynn, R. Laga, and C. M. Jewell, Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines, Cancer Lett, vol.459, pp.192-203, 2019.

M. J. Welters, Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses, Sci Transl Med, vol.8, pp.334-352, 2016.

A. Cadena, Radiation and Anti-Cancer Vaccines: A Winning Combination, Vaccines (Basel), vol.6, 2018.

P. A. Darrah, Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major, Nature medicine, vol.13, pp.843-850, 2007.

K. M. Quinn, Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization, J Immunol, vol.190, pp.2720-2735, 2013.

A. S. Ishizuka, Protection against malaria at 1 year and immune correlates following PfSPZ vaccination, Nature medicine, vol.22, pp.614-623, 2016.

M. Roederer, J. L. Nozzi, and M. C. Nason, SPICE: exploration and analysis of postcytometric complex multivariate datasets, Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol.79, pp.167-174, 2011.

Y. Kim, Immune epitope database analysis resource, Nucleic Acids Res, vol.40, pp.525-530, 2012.

M. Nielsen, Reliable prediction of T-cell epitopes using neural networks with novel sequence representations, Protein Sci, vol.12, pp.1007-1017, 2003.

B. Peters and A. Sette, Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method, BMC Bioinformatics, vol.6, 2005.

B. L. Aken, Nucleic Acids Res, vol.45, pp.635-642, 2017.

X. Liu, C. Wu, C. Li, and E. Boerwinkle, 0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs, Hum Mutat, vol.37, pp.235-241, 2016.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J Mol Biol, vol.157, pp.105-132, 1982.

J. G. Tate, COSMIC: the Catalogue Of Somatic Mutations In Cancer, Nucleic Acids Research, vol.47, pp.941-947, 2018.