, WHO, 2018.

G. Sotgiu, R. Centis, L. Migliori, and G. B. , Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 5: a017822, 2015.

S. Sahu, L. Ditiu, and A. Zumla, After the UNGA High-Level Meeting on Tuberculosis-what next and how? The Lancet Global Health, vol.7, pp.30068-30071, 2019.

R. Mahajan, Bedaquiline: first FDA-approved tuberculosis drug in 40 years, Int J Appl Basic Med Res, vol.3, pp.1-2, 2013.

E. Pontali and M. C. Raviglione, Migliori GB and the writing group members of the Global TB Network Clinical Trials Committee (2019) Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives, Eur Respir Rev, vol.30, 190035.

A. Maxmen, Treatment for extreme drug-resistant tuberculosis wins US government approval, Nature, 2019.

R. Mahajan, Bedaquiline: first FDA-approved tuberculosis drug in 40 years, Int J Appl Basic Med Res, vol.3, pp.1-2, 2013.

S. P. Rao, S. Alonso, L. Rand, T. Dick, and K. Pethe, The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis, Proc Natl Acad Sci, vol.105, pp.11945-11950, 2008.

G. C. Moraski, L. D. Markley, P. A. Hipskind, H. Boshoff, and S. Cho, Advent of Imidazo[1,2-a]pyridine-3-carboxamides with Potent Multi-and Extended Drug Resistant Antituberculosis Activity, ACS Med Chem Lett, vol.2, pp.466-470, 2011.

G. C. Moraski, L. D. Markley, J. Cramer, P. A. Hipskind, and H. Boshoff, Advancement of Imidazo[1,2-a]pyridines with Improved Pharmacokinetics and Nanomolar Activity Against Mycobacterium tuberculosis, ACS Med Chem Lett, vol.4, pp.675-679, 2013.

G. C. Moraski, A. G. Oliver, L. D. Markley, S. Cho, and S. G. Franzblau, Scaffold-switching: an exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo [1,2-a]pyridine-3-carboxylates, Bioorg Med Chem Lett, vol.24, pp.3493-3498, 2014.

Y. Cheng, G. C. Moraski, J. Cramer, M. J. Miller, and J. S. Schorey, Bactericidal activity of an imidazo[1,2-a] pyridine using a mouse M. tuberculosis infection model, PLoS One, vol.9, 2014.

G. C. Moraski, P. A. Miller, M. A. Bailey, J. Ollinger, and T. Parish, Putting Tuberculosis (TB) To Rest: Transformation of the Sleep Aid, Ambien, and "Anagrams" Generated Potent Antituberculosis Agents, ACS Infect Dis, vol.1, pp.85-90, 2015.

G. C. Moraski, Y. Cheng, S. Cho, J. W. Cramer, and A. Godfrey, Imidazo[1,2-a]Pyridine-3-Carboxamides Are Active Antimicrobial Agents against Mycobacterium avium Infection In Vivo, Antimicrob Agents Chemother, vol.60, p.27216051, 2016.

J. Ollinger, M. A. Bailey, G. C. Moraski, A. Casey, and S. Florio, A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis, PLoS One, vol.8, p.60531, 2013.

, Evaluation of Imidazo[2,1-b]thiazole-5-carboxamide Anti-Tubercular Tuberculosis Compound PLOS ONE |, 2020.

K. Pethe, P. Bifani, J. Jang, S. Kang, and S. Park, Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis, Nat Med, vol.19, pp.1157-1160, 2013.

S. Kang, R. Y. Kim, M. J. Seo, S. Lee, and Y. M. Kim, Lead optimization of a novel series of imidazo [1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi-and extensively-drug-resistant anti-tuberculosis agent, J Med Chem, vol.57, pp.5293-5305, 2014.

K. A. Abrahams, J. A. Cox, V. L. Spivey, N. J. Loman, and M. J. Pallen, Identification of novel imidazo [1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB, PLoS One, vol.7, 2012.

T. O'malley, T. Alling, J. V. Early, H. A. Wescott, and A. Kumar, Imidazopyridine compounds inhibit mycobacterial growth by depleting ATP levels, Antimicrob Agents Chemother, vol.62, pp.2439-2456, 2018.

J. Rybniker, A. Vocat, C. Sala, P. Busso, and F. Pojer, Lansoprazole is an antituberculous prodrug targeting cytochrome bc1, Nature Comm, vol.6, p.7659, 2015.

C. S. Foo, A. Lupien, M. Kienle, A. Vocat, and A. Benjak, Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobacterium tuberculosis, Mbio, vol.9, pp.1276-1294, 2018.

L. A. Cleghorn, P. C. Ray, J. Odingo, A. Kumar, and H. Wescott, Identification of morpholino thiophenes as novel Mycobacterium tuberculosis inhibitors, targeting QcrB, J Med Chem, vol.61, pp.6592-6608, 2018.

B. J. Berube and T. Parish, Combinations of respiratory chain inhibitors have enhanced bactericidal activity against Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.62, pp.1677-1694, 2018.

N. S. Chandrasekera, B. J. Berube, G. Shetye, S. Chettiar, O. Malley et al., Improved phenoxyalkylbenzimidazoles with activity against Mycobacterium tuberculosis appear to target QcrB, ACS Infect Dis, vol.3, pp.898-916, 2017.

K. Arora, B. Ochoa-montaño, P. S. Tsang, T. L. Blundell, and S. S. Dawes, Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.58, pp.6962-6965, 2014.

G. C. Moraski, N. Seeger, P. A. Miller, A. G. Oliver, and H. I. Boshoff, Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB, ACS Infect Dis, vol.2, pp.393-398, 2016.

G. C. Moraski, R. Bristol, N. Seeger, H. I. Boshoff, and P. S. Tsang, Preparation and Evaluation of Potent Pentafluorosulfanyl-Substituted Anti-Tuberculosis Compounds, ChemMedChem, vol.12, pp.1108-1115, 2017.

X. Lu, J. Tang, Z. Liu, M. Li, and T. Zhang, Discovery of new chemical entities as potential leads against Mycobacterium tuberculosis, Bioorg Med Chem Lett, vol.26, pp.5916-5919, 2016.

J. Tang, B. Wang, T. Wu, J. Wan, and Z. Tu, Design, synthesis, and biological evaluation of pyrazolo[1,5-a]pyridine-3-carboxamides as novel antitubercular agents, ACS Med Chem Lett, vol.6, pp.814-818, 2015.

X. Lu, Z. Williams, K. Hards, J. Tang, and C. Y. Cheung, Pyrazolo[1,5-a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of Drug-Resistant Tuberculosis, ACS Infect Dis, vol.5, pp.239-249, 2018.

X. Hu, B. Wan, Y. Liu, J. Shen, and S. G. Franzblau, Identification of Pyrazolo[1,5-a]pyridine-3-carboxamide Diaryl Derivatives as Drug Resistant Anti-tuberculosis Agents, ACS Med Chem Lett, vol.10, pp.295-299, 2019.

C. J. Queval, O. R. Song, V. Delorme, R. Iantomasi, and R. Veyron-churlet, A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening, J Vis Exp, vol.83, p.51114, 2014.

O. R. Song, N. Deboosere, V. Delorme, C. J. Queval, and G. Deloison, Phenotypic assays for Mycobacterium tuberculosis infection, Cytometry A, vol.91, pp.983-994, 2017.

K. Sprouffske and A. Wagner, Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves, BMC Bioinformatics, vol.17, p.27094401, 2016.

, Evaluation of Imidazo[2,1-b]thiazole-5-carboxamide Anti-Tubercular Tuberculosis Compound PLOS ONE |, 2020.

S. H. Cho, S. Warit, B. Wan, C. H. Hwang, and G. F. Pauli, Low-Oxygen-Recovery Assay for highthroughput screening of compounds against nonreplicating Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.51, pp.1380-1385, 2007.

L. G. Wayne and L. Hayes, Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis, Tuber Lung Dis, vol.79, pp.127-132, 1998.

K. Falzari, Z. Zhu, D. Pan, H. Liu, and P. Hongmanee, In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.49, pp.1447-1454, 2005.

P. Brodin, Y. Poquet, F. Levillain, I. Peguillet, and G. Larrouy-maumus, High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling, PLoS Pathog, vol.6, 2010.

A. J. Lenaerts, V. Gruppo, K. S. Marietta, C. M. Johnson, and D. K. Driscoll, Preclinical testing of the nitroimidazopyran PA-824 for activity against M. tuberculosis in a series of in vitro and in vivo models, 2005.

, Antimicrob Agents Chemother, vol.49, pp.2294-2301

R. Tiwari, G. C. Moraski, V. Krch?á-k, P. A. Miller, and M. Colon-martinez, Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents, J Am Chem Soc, vol.135, pp.3539-3549, 2013.

C. A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution, Drug Discov Today Technol, vol.1, pp.337-341, 2004.

R. S. Foti, D. A. Rock, L. C. Wienkers, and J. L. Wahlstrom, Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation, Drug Metab Dispos, vol.38, pp.981-987, 2010.

G. M. Cook, K. Hards, E. Dunn, A. Heikal, and Y. Nakatani, Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Direction, Microbiol Spectr, vol.5, 2017.

N. P. Kalia, E. J. Hasenoehrl, A. Rahman, N. B. Koh, V. H. Ang et al., Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection, 2017.

, Proc Natl Acad Sci, vol.114, pp.7426-7431

P. Lu, A. H. Asseri, M. Kremer, J. Maaskant, and R. Ummels, The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd, Sci Rep, vol.8, p.29422632, 2018.

N. Scherr, R. Bieri, S. S. Thomas, A. Chauffour, and N. P. Kalia, Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer, Nature Comm, vol.9, p.5370, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975358

Y. Liu, Y. Gao, J. Liu, Y. Tan, and Z. Liu, The compound TB47 is highly bactericidal against Mycobacterium ulcerans in a Buruli ulcer mouse model, Nature Comm, vol.10, p.524, 2019.

P. J. Converse, D. V. Almeida, S. Tyagi, J. Xu, and E. L. Nuermberger, Shortening Buruli ulcer treatment with combination therapy targeting the respiratory chain and exploiting M. ulcerans gene decay, Antimicrob Agents Chemother, vol.63, pp.426-427, 2019.