T. R. Fleming and D. L. Demets, Surrogate End Points in Clinical Trials: Are We being Misled? Annals of Internal Medicine, vol.125, pp.605-613, 1996.

U. A. Matulonis, A. M. Oza, T. W. Ho, and J. A. Ledermann, Intermediate Clinical Endpoints: A Bridge Between Progression-Free Survival and Overall Survival in Ovarian Cancer Trials, Cancer, vol.121, issue.11, pp.1737-1746, 2015.

S. S. Ellenberg and J. M. Hamilton, Surrogate Endpoints in Clinical Trials: Cancer, Statistics in Medicine, vol.8, issue.4, pp.405-413, 1989.

C. M. Booth and E. A. Eisenhauer, Progression-Free Survival: Meaningful or Simply Measurable, Journal of Clinical Oncology, vol.30, issue.10, pp.1030-1033, 2012.

R. L. Prentice, Surrogate Endpoints in Clinical Trials: Definition and operational criteria, Statistics in Medicine, vol.8, issue.4, pp.431-440, 1989.

M. Buyse, G. Molenberghs, T. Burzykowski, R. D. Geys, and H. , The Validation of Surrogate Endpoints in Meta-Analyses of Randomized Experiments, Biostatistics, vol.1, issue.1, pp.49-67, 2000.

T. Burzykowski, G. Molenberghs, M. Buyse, and H. Geys, The Evaluation of Surrogate Endpoints, 2005.

T. Burzykowski, G. Molenberghs, M. Buyse, H. Geys, and R. D. , Validation of Surrogate End Points in Multiple Randomized Clinical Trials with Failure Time End Points, Journal of the Royal Statistical Society C (Applied Statistics), vol.50, issue.4, pp.405-422, 2001.

F. Rotolo and . Surrosurv, Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses, 2017.

A. Alonso, T. Bigirumurame, T. Burzykowski, M. Buyse, G. Molenberghs et al., Applied Surrogate Endpoint Evaluation Methods with SAS and R. Chapman and Hall/CRC, 2017.

L. A. Renfro, Q. Shi, D. J. Sargent, and B. P. Carlin, Bayesian Adjusted R2 for the Meta-Analytic Evaluation of Surrogate Time-To-Event Endpoints in Clinical Trials, Statistics in Medicine, vol.31, issue.8, pp.743-761, 2012.

Q. Shi, L. A. Renfro, B. M. Bot, T. Burzykowski, M. Buyse et al., Comparative Assessment of Trial-Level Surrogacy Measures for Candidate Time-to-Event Surrogate Endpoints in Clinical Trials, Computational Statistics & Data Analysis, vol.55, issue.9, pp.2748-2757, 2011.

F. Rotolo, X. Paoletti, T. Burzykowski, M. Buyse, and S. Michiels, A Poisson Approach to the Validation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses, Statistical Methods in Medical Research, vol.28, issue.1, pp.170-183, 2019.

A. Alonso and G. Molenberghs, Surrogate Marker Evaluation from an Information Theory Perspective. Biometrics, vol.63, p.17447943, 2007.

M. Buyse, S. Michiels, P. Squifflet, K. J. Lucchesi, K. Hellstrand et al., Leukemia-free Survival as a Surrogate End Point for Overall Survival in the Evaluation of Maintenance Therapy for Patients with Acute Myeloid Leukemia in Complete Remission, Haematologica, vol.96, issue.8, pp.1106-1112, 2011.

M. Buyse, G. Molenberghs, X. Paoletti, K. Oba, A. Alonso et al., Statistical Evaluation of Surrogate Endpoints with Examples from, Cancer Clinical Trials. Biometrical Journal, vol.58, issue.1, pp.104-132, 2016.

C. L. Sofeu, T. Emura, and V. Rondeau, One-step validation method for surrogate endpoints using data from multiple randomized cancer clinical trials with failure-time endpoints, Statistics in Medicine, vol.38, issue.16, pp.2928-2942, 2019.

D. Y. Lin and L. J. Wei, The Robust Inference for the Cox Proportional Hazards Model, Journal of the American Statistical Association, vol.84, issue.408, pp.1074-1078, 1989.

W. Van-der-elst, P. Meyvisch, A. Alonso, H. M. Ensor, and C. Molenberghs, Surrogate: Evaluation of Surrogate Endpoints, Clinical Trials, 2018.

S. Bujkiewicz, J. R. Thompson, R. D. Riley, and K. R. Abrams, Bayesian Meta-Analytical Methods to Incorporate Multiple Surrogate Endpoints in Drug Development Process. In: Statistics in medicine, 2016.

, Institute for Quality and Efficiency in Health Care. Validity of Surrogate Endpoints in Oncology: Executive Summary, 2011.

T. Burzykowski and M. Buyse, Surrogate Threshold Effect: An Alternative Measure for Meta-Analytic Surrogate Endpoint validation, Pharmaceutical Statistics, vol.5, issue.3, pp.173-186, 2006.

A. Król, A. Mauguen, Y. Mazroui, A. Laurent, S. Michiels et al., Tutorial in Joint Modeling and Prediction: A Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event, Journal of Statistical Software, vol.81, issue.3, pp.1-52, 2017.

, Cyclophosphamide Plus Cisplatin Plus Adriamycin Persus Cyclophosphamide, Doxorubicin, and Cisplatin Chemotherapy of Ovarian Carcinoma: A Meta-Analysis. Classic Papers and Current Comments, vol.3, pp.237-234, 1991.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.

P. Joly, D. Commenges, and L. Letenneur, A Penalized Likelihood Approach for Arbitrarily Censored and Truncated Data: Application to Age-Specific Incidence of Dementia, Biometrics, vol.54, issue.1, pp.185-194, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-00182453

M. H. Gail, R. Pfeiffer, H. C. Van-houwelingen, and R. J. Carroll, On Meta-Analytic Assessment of Surrogate Outcomes, Biostatistics, vol.1, issue.3, pp.231-246, 2000.

V. Rondeau, S. Mathoulin-pelissier, H. Jacqmin-gadda, V. Brouste, and P. Soubeyran, Joint Frailty Models for Recurring Events and Death Using Maximum Penalized Likelihood Estimation: Application on Cancer Events, Biostatistics, vol.8, issue.4, pp.708-721, 2007.
URL : https://hal.archives-ouvertes.fr/halshs-00121706

V. Rondeau, J. R. Gonzalez, Y. Mazroui, A. Mauguen, A. Diakite et al., General Frailty Models: Shared, Joint and Nested Frailty Models with Prediction; Evaluation of Failure-Time Surrogate Endpoints, 2019.

B. E. Dowd, W. H. Greene, and E. C. Norton, Computation of Standard Errors, Health Services Research, vol.49, issue.2, pp.731-750, 2014.

V. Prasad, C. Kim, M. Burotto, and A. Vandross, The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-Analyses, JAMA Internal Medicine, vol.175, issue.8, pp.1389-1398, 2015.

S. G. Baker, Five Criteria for Using a Surrogate Endpoint to Predict Treatment Effect Based on Data from Multiple Previous Trials, Statistics in Medicine, vol.37, issue.4, pp.507-518, 2018.

H. Jurgen, W. Song, and K. John, Using simulation to optimize adaptive trial designs: applications in learning and confirmatory phase trials, Clinical Investigation, vol.5, issue.4, pp.401-413, 2015.

T. Emura, M. Nakatochi, K. Murotani, and V. Rondeau, A Joint Frailty-Copula Model Between Tumour Progression and Death for Meta-Analysis. Statistical Methods in Medical Research, vol.26, pp.2649-2666, 2017.