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Generalities on finite mixtures 

The data ! = (!$, . . . , !') are assumed to consist of n independent realizations of the 

random variable ) = ()$, . . . , )') which corresponds to J ordinal variables with L levels (for 

instance, the household cleaning dataset has J=24 variables with L=4 levels). We postulate that 

the observed heterogeneous population consists of K classes of homogeneous individuals where a 

class is defined by the subset of the individuals generated from the same distribution. Thus, 

modelling one observation requires two random variables: the categorical variable Z having K 

modalities which follows a multinomial distribution *+(,$, . . . , ,+) where ,+ = -(. = /) is the 

marginal probability that an individual belongs to class K, and the multivariate ordinal variable X 

whose distribution is modelled conditionally on Z. In clustering, the realizations of X are 

observed while the realizations of Z are missing and should be estimated. Thus, the distribution of 

the observed variables is a mixture model with K classes defined by 

   -() = !) = ∑ ,+
1
+2$ -() = !	|	. = /) 

When the distributions of the mixture components are defined (i.e distributions of X  |  Z = k ), 

the probability that individual x belongs to class k is defined by 

   -(. = /	|	) = !) =
567(829	|	:2+)

7(829)
 

Hence, the clustering goal can be easily achieved by affecting an individual to the class that 

maximizes the posterior probability (i.e. the class k maximizing -(. = /	|	) = !)). When data 

with missing values can be managed, the formula can be used by assuming that variables are 

missing at random [1]. In this case, distribution of the observed variables replaces 

-() = !	|	. = /) by marginalization over the set of the possible values of the missing variables. 

  

Within-class independence and within-class independence per blocks 
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 The simplest way to cluster ordinal data is to use the latent class model which 

assumes within-class independence. Therefore,  

      -() = !	|	. = /) = ∏ -<
=2$ >)= = !=	|	. = /? 

and the univariate variable)=	|	. = / follows a multinomial distribution*@>A+=$, . . . , A+=@?. 

Therefore, each class is interpreted with its univariate probabilities ->)= = B	|	. = /? as the 

probability that an individual belonging to class k takes level l for variable j. 

Although the within-class independence assumption is useful for modelling ordinal 

variables, it leads to severe biases when within-class dependencies occur [2]. Therefore, to cluster 

the household cleaning data, we propose to use an extension of the model of Marbac et al. [3], 

which relaxes this assumption. The model splits the variables into B within-class independent 

blocks: 

     -() = !	|	. = /) = ∏ -C
D2$ >){D} = !{D}	|	. = /? 

where ){D} = >)=; H ∈ JD? corresponds to the subset of variables of block b and where JD contains 

the indices of the variables of block b. We now detail the distribution of ){D}	|	. = / which models 

intra-class dependencies between the variables of a block. 

 

Specific block distribution 

 The block distribution is a mixture of the two extreme distributions according to 

the Cramer's V: the independence and the maximum dependency. The latter has been introduced 

for categorical variables but can be extended to ordinal data by imposing constraints for 

considering the order between the levels of the ordinal variables [3]. So, we introduce the binary 

random variable KD where KD = 1 indicates that the variables of block b follow the maximum 

dependency distribution while these variables follow the independence distribution if KD = 0. 
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Since KD		|		. = / follows a Bernoulli distribution N>O+=? where O+D = -(KD = 1	|	. = /), the 

conditional distribution of ){D} is 

->){D} = !{D}	|	. = /? = (1 − O+D)->){D} = !{D}	|	. = /, KD = 0? + O+D->){D} = !{D}	|	. = /, KD = 1? 

Conditionally on (. = /, KD = 0),  the block variables are independent, so 

    ->){D} = !{D}	|	. = /, KD = 0? = ∏ -=∈RS >)= = !=	|	. = /, KD = 0?. 

Each univariate random variable )=	|	. = /, KD = 0 follows a multinomial distribution 

*@>T+=$, . . . , T+=@? where T+=U indicates the probability that the variable j takes the level l under the 

independence distribution for class k.  

 The maximum dependency constrains all the block variables to take the same 

level. In class k and block k, this level follows a multinomial distribution *@>V+=$, . . . , V+=@?. So,  

->){D} = !{D}	|	. = /, KD = 1? = W
V+DU	XY	∀H ∈ JD: != = B

0	\B]\
 

The parameter V+DU corresponds to the probability that all variables of block b take level l under 

the maximum dependency distribution of class k. 

  

Model interpretation 

The importance of each class is defined by its proportion. Moreover, the class k can be 

summarized by the univariate probability of the variables ->)= = B	|	. = /?, i.e. the probability that 

an individual takes level l for the variable )=, conditionally on belonging to class k (often referred 

to as "posterior probabilities"). The probability is obtained from the model parameters by 

   ->)= = B	|	. = /? = (1 − O+D)T+=U + O+DV+DU	^ℎ\`\	a: = b= 

The interpretation of class k can be refined with the within-class dependencies which are mainly 

characterized by parameters O+$, . . . , O+C. Indeed, for block b of class k,O+D is similar to a 

correlation coefficient between all variables assigned into block b since 0 < O+D < 1. Finally 
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parameters V+D$, . . . , V+D@ bring out the more linked modality association between the variables of 

block b under class k. 

 

Parameter inference and model selection 

For a known model, the maximum likelihood estimates can be obtained by an EM 

algorithm [4,5]. The model selection is performed via the Integrated Completed Likelihood (ICL) 

criterion [6] since it focuses on the goal of clustering. This criterion favors a model that provides 

partition with strong evidence since it makes a trade-off between the model evidence and the 

partitioning evidence. Since the model space is discrete, the search for the model that maximizes 

the ICL criterion is a combinatorial problem which can be circumvented by a Metropolis-

Hastings algorithm [7] performing a random walk over the model space. The mode of its 

stationary distribution is located on the model that maximizes the ICL criterion since its unique 

invariant distribution is proportional to	\!d>efg(h, i, b)?. 

 

Case of variables with different number of levels 

The number of levels can be different between variables. Indeed, the mixture model of 

dependency blocks introduced for categorical data does not force the variables to have the same 

number of levels [3]. Here, the approach is an extension of this model to ordinal data. The main 

idea is to impose constraints on the maximum dependency distribution (one of the two 

distributions used to model one block of variables). Indeed, the relations between the levels of the 

variables of a block are monotone. If two variables have the same number of levels, this 

distribution implies a one-to-one relation between the levels of two variables. If the number of 

levels is not equal, this distribution implies a many-to-one relation between the levels (as defined 
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by [3]).  
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Figure E1. Description of the class “Very sparse cleaning”. Results presented as posterior probabilities of each variable. 
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Figure E2. Description of the class “Sparse cleaning”. Results presented as posterior probabilities of each variable. 
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Figure E3. Description of the class “Medium cleaning”. Results presented as posterior probabilities of each variable. 
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Figure E4. Description of the class “Frequent general cleaning”. Results presented as posterior probabilities of each variable. 

  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cleaning at home
Household cleaning

Dusting/sweeping/hoovering and rug beating
Mopping

Toilet bowl cleaning
Liquid cleaning products

Perfumes
Bleach

Washing by hand
Washing by machine

Handiwork
Floor/furniture polishing/waxing/shampooing

Polish/waxes
Windows/mirrors cleaning

Windows/mirrors sprays
Ammonia

Acids
Stain removers

Furniture sprays
Floor cleaning sprays

Degreasing/oven sprays
Air-refreshing sprays

Insecticide/pesticide/acaricide sprays
Other sprays

Never

<1 day/week

1-3 days/week

4-7 days/week



12 
 

 

Figure E5. Description of the class “Frequent use of products”. Results presented as posterior probabilities of each variable. 
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Figure E6. Description of the class “Very frequent general cleaning”. Results presented as posterior probabilities of each variable. 
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Figure E7. Description of the class “Very frequent use of products”. Results presented as posterior probabilities of each variable. 
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