J. K. Hsieh, J. E. Dalton, D. Yang, E. S. Farag, D. I. Sessler et al., The association between mild intraoperative hypotension and stroke in general surgery patients, Anesth Analg, vol.123, issue.4, pp.933-942, 2016.

A. Maheshwari, P. J. Mccormick, D. I. Sessler, D. L. Reich, J. You et al., Prolonged concurrent hypotension and low bispectral index, vol.9, p.117, 2019.

, are associated with mortality, serious complications, and prolonged hospitalization after cardiac surgery, Br J Anaesth, vol.119, issue.1, pp.40-49, 2017.

V. Salmasi, K. Maheshwari, D. Yang, E. J. Mascha, A. Singh et al., Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis, Anesthesiology, vol.126, issue.1, pp.47-65, 2017.

X. Yang and B. Du, Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis, Crit Care Lond Engl, vol.18, issue.6, p.650, 2014.

P. E. Marik, R. Cavallazzi, T. Vasu, and A. Hirani, Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature, Crit Care Med, vol.37, issue.9, pp.2642-2649, 2009.

M. Biais, A. Ouattara, G. Janvier, and F. Sztark, Case scenario: respiratory variations in arterial pressure for guiding fluid management in mechanically ventilated patients, Anesthesiology, vol.116, issue.6, pp.1354-61, 2012.

M. R. Pinsky, Heart lung interactions during mechanical ventilation, Curr Opin Crit Care, vol.18, issue.3, pp.256-60, 2012.

P. Guinot, E. Bernard, M. Levrard, H. Dupont, and L. E. , Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock, Crit Care Lond Engl, vol.19, p.14, 2015.

P. Guinot, O. Abou-arab, M. Guilbart, S. Bar, E. Zogheib et al., Monitoring dynamic arterial elastance as a means of decreasing the duration of norepinephrine treatment in vasoplegic syndrome following cardiac surgery: a prospective, randomized trial, Intensiv Care Med, vol.43, issue.5, pp.643-51, 2017.

C. Wu, Y. Cheng, Y. Liu, T. Wu, C. Chien et al., Predicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables: a prospective study of diagnostic accuracy, Eur J Anaesthesiol, vol.33, issue.9, pp.645-52, 2016.

J. J. Vos, A. F. Kalmar, M. Struys, J. Wietasch, H. Hendriks et al., Comparison of arterial pressure and plethysmographic waveformbased dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection, Br J Anaesth, vol.110, issue.6, pp.940-946, 2013.

R. Lanchon, K. Nouette-gaulain, L. Stecken, M. Sesay, J. Lefrant et al., Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room, Anaesth Crit Care Pain Med, vol.36, issue.6, pp.377-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01800293

M. García, M. I. Romero, M. G. Cano, A. G. Aya, H. D. Rhodes et al., Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study, Crit Care Lond Engl, vol.18, issue.6, p.626, 2014.

M. Cecconi, M. García, M. I. , G. Romero, M. Mellinghoff et al., The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration, Anesth Analg, vol.120, issue.1, pp.76-84, 2015.

H. Seo, Y. Kong, J. Chin, J. Kim, H. Lee et al., Dynamic arterial elastance in predicting arterial pressure increase after fluid challenge during robot-assisted laparoscopic prostatectomy: a prospective observational study, Medicine, vol.94, issue.41, p.1794, 2015.

M. García, M. I. , G. Cano, A. , G. Romero et al., Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients, Crit Care Lond Engl, vol.15, issue.1, p.15, 2011.

F. Guarracino, P. Bertini, and M. R. Pinsky, Cardiovascular determinants of resuscitation from sepsis and septic shock, Crit Care, vol.23, issue.1, p.118, 2019.

J. Stens, J. Oeben, A. A. Van-dusseldorp, and C. Boer, Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor, J Clin Monit Comput, vol.30, issue.5, pp.587-94, 2016.

F. Michard, S. Boussat, D. Chemla, N. Anguel, A. Mercat et al., Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure, Am J Respir Crit Care Med, vol.162, issue.1, pp.134-142, 2000.

P. Guinot, B. De-broca, E. Bernard, A. Arab, O. et al., Respiratory stroke volume variation assessed by oesophageal Doppler monitoring predicts fluid responsiveness during laparoscopy, Br J Anaesth, vol.112, issue.4, pp.660-664, 2014.

D. Chemla, J. L. Hébert, C. Coirault, K. Zamani, I. Suard et al., Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans, Am J Physiol, vol.274, pp.500-505, 1998.

M. Jozwiak, S. Millasseau, C. Richard, X. Monnet, P. Mercado et al., Validation and critical evaluation of the effective arterial elastance in critically ill patients, Crit Care Med, vol.47, issue.4, pp.317-341, 2019.

M. Garcia, M. I. Jian, Z. Settels, J. J. Hatib, F. Cecconi et al., Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure, J Clin Monit Comput, 2018.

E. R. Delong, D. M. Delong, and D. L. Clarke-pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, vol.44, issue.3, pp.837-882, 1988.

M. Biais, S. Ehrmann, A. Mari, B. Conte, Y. Mahjoub et al., Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach, Crit Care Lond Engl, vol.18, issue.6, p.587, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01945321

P. Ray, L. Manach, Y. Riou, B. Houle, and T. T. , Statistical evaluation of a biomarker, Anesthesiology, vol.112, issue.4, pp.1023-1063, 2010.

G. Molenberghs and G. Verbeke, Linear mixed models for longitudinal data, 2000.

M. García, M. I. , S. Orduña, P. Cecconi, and M. , Understanding arterial load, Intensiv Care Med, vol.42, issue.10, pp.1625-1632, 2016.

K. Sunagawa, W. L. Maughan, D. Burkhoff, and K. Sagawa, Left ventricular interaction with arterial load studied in isolated canine ventricle, Am J Physiol, vol.245, pp.773-80, 1983.

O. Rebet, O. Andremont, J. Gérard, J. Fellahi, J. Hanouz et al., Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients: a prospective observational study, Eur J Anaesthesiol, vol.33, issue.9, pp.638-682, 2016.

M. Cannesson, Z. Jian, G. Chen, T. Q. Vu, and F. Hatib, Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship, J Appl Physiol, vol.113, issue.2, pp.281-290, 2012.

A. W. Goertz, M. Schmidt, C. Seefelder, K. H. Lindner, and M. Georgieff, The effect of phenylephrine bolus administration on left ventricular function during isoflurane-induced hypotension, Anesth Analg, vol.77, issue.2, pp.227-258, 1993.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations