R. S. Vasan and E. J. Benjamin, The Future of Cardiovascular Epidemiology, Circulation, vol.133, pp.2622-2633, 2016.

, World Health Organization. Cardiovascular diseases (CVDs), p.17, 2019.

J. G. Travers, F. A. Kamal, J. Robbins, K. E. Yutzey, and B. C. Blaxall, Cardiac Fibrosis: The Fibroblast Awakens, Circ. Res, vol.118, pp.1021-1040, 2016.

J. Tian, X. An, and L. Niu, Myocardial fibrosis in congenital and pediatric heart disease, vol.13, pp.1660-1664, 2017.

P. Kong, P. Christia, and N. G. Frangogiannis, The pathogenesis of cardiac fibrosis, Cell Mol. Life Sci, vol.71, pp.549-574, 2014.

P. Zahradka, Novel Role for Osteopontin in Cardiac Fibrosis, Circ. Res, vol.102, pp.270-272, 2008.

P. Rubis, S. Wisniowska-smialek, E. Dziewiecka, L. Rudnicka-sosin, A. Kozanecki et al., Prognostic value of fibrosis-related markers in dilated cardiomyopathy: A link between osteopontin and cardiovascular events, Adv. Med. Sci, vol.63, pp.160-166, 2018.

S. Park, N. B. Nguyen, A. Pezhouman, and R. Ardehali, Cardiac fibrosis: Potential therapeutic targets, Transl. Res, vol.209, pp.121-137, 2019.

D. Fan, A. Takawale, J. Lee, and Z. Kassiri, Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease, Fibrogenesis Tissue Repair, vol.5, 2012.

K. Xue, J. Zhang, C. Li, J. Li, C. Wang et al., The role and mechanism of transforming growth factor beta 3 in human myocardial infarction-induced myocardial fibrosis, J. Cell Mol. Med, vol.23, pp.4229-4243, 2019.

M. D. Mckee, C. E. Pedraza, and M. T. Kaartinen, Osteopontin and wound healing in bone, Cells Tissues Organs, vol.194, pp.313-319, 2011.

H. Okamoto and K. Imanaka-yoshida, Matricellular Proteins: New Molecular Targets To Prevent Heart Failure, Cardiovasc. Ther, vol.30, pp.198-209, 2011.

I. A. Mohamed, A. P. Gadeau, L. Fliegel, G. Lopaschuk, M. Mlih et al., Na + /H + exchanger isoform 1-induced osteopontin expression facilitates cardiomyocyte hypertrophy, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02519399

M. Singh, C. R. Foster, S. Dalal, K. Singh, and . Osteopontin, Role in extracellular matrix deposition and myocardial remodeling post-MI, J. Mol. Cell Cardiol, vol.48, pp.538-543, 2010.

J. Li, K. Yousefi, W. Ding, J. Singh, and L. A. Shehadeh, Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure, Cardiovasc. Res, vol.113, pp.633-643, 2017.

Y. Lenga, A. Koh, A. Perera, C. Mcculloch, J. Sodek et al., Osteopontin expression is required for myofibroblast differentiation, Circ. Res, vol.102, pp.319-327, 2008.

M. Singh, S. Dalal, K. Singh, and . Osteopontin, At the cross-roads of myocyte survival and myocardial function, Life Sci, vol.118, pp.1-6, 2014.

D. R. Senger, D. F. Wirth, and R. O. Hynes, Transformed mammalian cells secrete specific proteins and phosphoproteins, Cell, vol.16, pp.885-893, 1979.

A. H. Waller, M. Sanchez-ross, E. Kaluski, and M. Klapholz, Osteopontin in cardiovascular disease: A potential therapeutic target, Cardiol. Rev, vol.18, pp.125-131, 2010.

J. Sodek, B. Ganss, . Mc, M. D. Kee, and . Osteopontin, Crit. Rev. Oral. Biol. Med, vol.11, pp.279-303, 2000.

G. S. Lee, H. F. Salazar, G. Joseph, Z. S. Lok, C. M. Caroti et al., Osteopontin isoforms differentially promote arteriogenesis in response to ischemia via macrophage accumulation and survival, Lab. Investig, vol.99, pp.331-345, 2019.

I. A. Mohamed and F. Mraiche, Targeting osteopontin, the silent partner of Na+/H+ exchanger isoform 1 in cardiac remodeling, J. Cell Physiol, vol.230, 2006.

C. Hao, Y. Cui, S. Owen, W. Li, S. Cheng et al., Human osteopontin: Potential clinical applications in cancer (Review), Int. J. Mol. Med, vol.39, pp.1327-1337, 2017.

Z. S. Lok and A. N. Lyle, Osteopontin in Vascular Disease Friend or Foe?, Arterioscler. Thromb. Vasc. Biol, vol.39, pp.613-622, 2019.

C. C. Kazanecki, D. J. Uzwiak, and D. T. Denhardt, Control of osteopontin signaling and function by post-translational phosphorylation and protein folding, J. Cell Biochem, vol.102, pp.912-924, 2007.

J. Podzimkova, T. Palecek, P. Kuchynka, J. Marek, B. A. Danek et al., Plasma osteopontin levels in patients with dilated and hypertrophic cardiomyopathy, vol.44, pp.347-353, 2017.

D. Kurzbach, G. Platzer, T. C. Schwarz, M. A. Henen, R. Konrat et al., Cooperative unfolding of compact conformations of the intrinsically disordered protein osteopontin, Biochemistry, vol.52, pp.5167-5175, 2013.

M. A. Icer and M. Gezmen-karadag, The multiple functions and mechanisms of osteopontin, Clin. Biochem, vol.59, pp.17-24, 2018.

S. Jalvy, M. A. Renault, L. L. Leen, I. Belloc, J. Bonnet et al., Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration, Cardiovasc. Res, vol.75, pp.738-747, 2007.

S. A. Lund, C. M. Giachelli, and M. Scatena, The role of osteopontin in inflammatory processes, J. Cell Commun. Signal, vol.3, pp.311-322, 2009.

M. Scatena, M. Almeida, M. L. Chaisson, N. Fausto, R. F. Nicosia et al., NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival, J. Cell Biol, vol.141, pp.1083-1093, 1998.

T. Wolak, N. Sion-vardi, V. Novack, G. Greenberg, G. Szendro et al., N-terminal rather than full-length osteopontin or its C-terminal fragment is associated with carotid-plaque inflammation in hypertensive patients, Am. J. Hypertens, vol.26, pp.326-333, 2013.

Y. Li, H. Asfour, and N. Bursac, Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue, Acta Biomater, vol.55, pp.120-130, 2017.

N. Frerker, M. Kasprzycka, B. Mikalsen, P. D. Line, H. Scott et al., Role of Matricellular Proteins in Cardiac Allograft Fibrosis, Cardiac Transplantation, pp.99-122, 2012.

S. Das, T. Aiba, M. Rosenberg, K. Hessler, C. Xiao et al., Pathological role of serum-and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling, Circulation, vol.126, pp.2208-2219, 2012.

K. Graf, Y. S. Do, N. Ashizawa, W. P. Meehan, C. M. Giachelli et al., Myocardial osteopontin expression is associated with left ventricular hypertrophy, Circulation, vol.96, pp.3063-3071, 1997.

Z. Xie, M. Singh, and K. Singh, Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice, Hypertension, vol.44, pp.826-831, 2004.

Y. Matsui, N. Jia, H. Okamoto, S. Kon, H. Onozuka et al., Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy, Hypertension, vol.43, pp.1195-1201, 2004.

N. Abdulrahman, B. Jaspard-vinassa, L. Fliegel, A. Jabeen, S. Riaz et al., Na + /H + exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase, Physiol. Genom, vol.50, pp.332-342, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02468916

M. Mlih, N. Abdulrahman, A. P. Gadeau, I. A. Mohamed, M. Jaballah et al., Na + /H + exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4, Mol. Cell Biochem, vol.404, pp.211-220, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02519417

H. Diao, K. Iwabuchi, L. Li, K. Onoe, L. Van-kaer et al., Osteopontin regulates development and function of invariant natural killer T cells, Proc. Natl. Acad. Sci, vol.105, pp.15884-15889, 2008.

J. Xue, F. Mraiche, D. Zhou, M. Karmazyn, T. Oka et al., Elevated myocardial Na + /H + exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy, Physiol. Genom, vol.42, pp.374-383, 2010.

J. Voelkl, Y. Lin, I. Alesutan, M. Ahmed, V. Pasham et al., Sgk1 sensitivity of Na+/H+ exchanger activity and cardiac remodeling following pressure overload, Basic Res. Cardiol, vol.107, pp.1-15, 2012.

V. Soetikno, F. R. Sari, V. Sukumaran, A. P. Lakshmanan, S. Mito et al., Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC-MAPK signaling pathway, Eur. J. Pharm. Sci, vol.47, pp.604-614, 2012.

L. M. Nilsson-berglund, A. V. Zetterqvist, J. Nilsson-ohman, M. Sigvardsson, L. V. Gonzalez-bosc et al., Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia, Arter. Thromb. Vasc. Biol, vol.30, pp.218-224, 2010.

M. A. Renault, F. Robbesyn, P. Reant, V. Douin, D. Daret et al., Osteopontin expression in cardiomyocytes induces dilated cardiomyopathy. Circ. Heart Fail, vol.3, pp.431-439, 2010.

H. Okamoto, Osteopontin and cardiovascular system, Mol. Cell Biochem, vol.300, pp.1-7, 2007.

V. Subramanian, P. Krishnamurthy, K. Singh, and M. Singh, Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice, Am. J. Physiol. Heart Circ. Physiol, vol.292, pp.673-683, 2007.

S. Psarras, D. Beis, S. Nikouli, M. Tsikitis, and Y. Capetanaki, Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes, Front. Cardiovasc. Med, vol.6, 2019.

P. Huebener, T. Abou-khamis, P. Zymek, M. Bujak, X. Ying et al., CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response, J. Immunol, vol.180, pp.2625-2633, 2008.

B. Lopez, A. Gonzalez, D. Lindner, D. Westermann, S. Ravassa et al., Osteopontin-mediated myocardial fibrosis in heart failure: A role for lysyl oxidase?, Cardiovasc. Res, vol.99, pp.111-120, 2013.

S. Psarras, M. Mavroidis, D. Sanoudou, C. H. Davos, G. Xanthou et al., Regulation of adverse remodelling by osteopontin in a genetic heart failure model, Eur Heart J, vol.33, pp.1954-1963, 2012.

N. G. Frangogiannis, Matricellular proteins in cardiac adaptation and disease, Physiol. Rev, vol.92, pp.635-688, 2012.

H. Nakayama, H. Nagai, K. Matsumoto, R. Oguro, K. Sugimoto et al., Association between osteopontin promoter variants and diastolic dysfunction in hypertensive heart in the Japanese population, Hypertens Res, vol.34, pp.1141-1146, 2011.

A. Collins, J. Schnee, W. Wang, S. Kim, M. Fishbein et al., Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart, J. Am. Coll. Cardiol, vol.43, pp.1698-1705, 2004.

J. Dai, T. Matsui, E. D. Abel, S. Dedhar, R. E. Gerszten et al., Deep Sequence Analysis of Gene Expression Identifies Osteopontin as a Downstream Effector of Integrin-Linked Kinase (ILK) in Cardiac-Specific ILK Knockout Mice, Circ. Heart Fail, vol.7, pp.184-193, 2014.

Z. Xie, M. Singh, and K. Singh, ERK1/2 and JNKs, but not p38 kinase, are involved in reactive oxygen species-mediated induction of osteopontin gene expression by angiotensin II and interleukin-1beta in adult rat cardiac fibroblasts, J. Cell Physiol, vol.198, pp.399-407, 2004.

B. L. Yin, H. Hao, Y. Y. Wang, Y. J. Jiang, and S. Xue, Downregulating osteopontin reduces angiotensin II-induced inflammatory activation in vascular smooth muscle cells, Inflamm. Res, vol.58, pp.67-73, 2009.

N. A. Trueblood, Z. Xie, C. Communal, F. Sam, S. Ngoy et al., Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin, Circ. Res, vol.88, pp.1080-1087, 2001.

C. M. Pollard, V. L. Desimine, S. L. Wertz, A. Perez, B. M. Parker et al., Deletion of Osteopontin Enhances beta(2)-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes, Int. J. Mol. Sci, vol.20, 1396.

Y. Tao, X. Hou, F. Zuo, X. Li, Y. Pang et al., Application of nanoparticle-based siRNA and CRISPR/Cas9 delivery systems in gene-targeted therapy, Nanomedicine, vol.14, pp.511-514, 2019.

D. Gordin, C. Forsblom, N. M. Panduru, M. C. Thomas, M. Bjerre et al., Osteopontin is a strong predictor of incipient diabetic nephropathy, cardiovascular disease, and all-cause mortality in patients with type 1 diabetes, Diabetes Care, vol.37, pp.2593-2600, 2014.

M. Rosenberg, F. J. Meyer, E. Gruenig, M. Lutz, D. Lossnitzer et al., Osteopontin predicts adverse right ventricular remodelling and dysfunction in pulmonary hypertension, Eur. J. Clin. Invest, vol.42, pp.933-942, 2012.

K. Okyay, Y. Tavil, A. Sahinarslan, G. Tacoy, M. Turfan et al., Plasma osteopontin levels in prediction of prognosis in acute myocardial infarction, Acta Cardiol, vol.66, pp.197-202, 2011.

C. Suezawa, S. Kusachi, T. Murakami, K. Toeda, S. Hirohata et al., Time-dependent changes in plasma osteopontin levels in patients with anterior-wall acute myocardial infarction after successful reperfusion: Correlation with left-ventricular volume and function, J. Lab. Clin. Med, vol.145, pp.33-40, 2005.

P. Francia, C. Balla, A. Ricotta, A. Uccellini, A. Frattari et al., Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure, Int. J. Cardiol, vol.153, pp.306-310, 2011.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI