M. Gatz, Role of genes and environments for explaining Alzheimer disease, Arch. Gen. Psychiatry, vol.63, pp.168-174, 2006.

J. Lambert, Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nat. Genet, vol.45, pp.1452-1458, 2013.

D. Harold, Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, Nat. Genet, vol.41, pp.1088-1093, 2009.

J. Lambert, Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease, Nat. Genet, vol.41, pp.1094-1099, 2009.

V. Escott-price, Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease, PLoS One, vol.9, p.94661, 2014.

P. Hollingworth, Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease, Nat. Genet, vol.43, pp.429-435, 2011.

A. C. Naj, Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease, Nat. Genet, vol.43, pp.436-441, 2011.

A. Ruiz, Toward fine mapping and functional characterization of genome-wide association study-identified locus rs74615166 (TRIP4) for Alzheimer's disease, Alzheimers Dement, vol.10, pp.257-258, 2014.

T. Jonsson, Variant of TREM2 associated with the risk of Alzheimer's disease, N. Engl. J. Med, vol.368, pp.107-116, 2013.

T. Jonsson, A mutation in APP protects against Alzheimer's disease and agerelated cognitive decline, Nature, vol.488, pp.96-99, 2012.

R. Guerreiro, TREM2 variants in Alzheimer's disease, N. Engl. J. Med, vol.368, pp.117-127, 2013.

S. Seshadri, Genome-wide analysis of genetic loci associated with Alzheimer disease, J. Am. Med. Assoc, vol.303, pp.1832-1840, 2010.

V. Escott-price, Common polygenic variation enhances risk prediction for Alzheimer's disease, Brain, vol.138, pp.3673-3684, 2015.

W. Bodmer and C. Bonilla, Common and rare variants in multifactorial susceptibility to common diseases, Nat. Genet, vol.40, pp.695-701, 2008.

J. K. Pritchard, Are rare variants responsible for susceptibility to complex diseases?, Am. J. Hum. Genet, vol.69, pp.124-137, 2001.

N. J. Schork, S. S. Murray, K. A. Frazer, and E. J. Topol, Common vs. rare allele hypotheses for complex diseases, Curr. Opin. Genet. Dev, vol.19, pp.212-219, 2009.

I. Surakka, The impact of low-frequency and rare variants on lipid levels, Nat. Genet, vol.47, pp.589-597, 2015.

B. N. Vardarajan, Coding mutations in SORL1 and Alzheimer disease, Ann. Neurol, vol.77, pp.215-227, 2015.

B. N. Vardarajan, Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci, Ann. Neurol, vol.78, pp.487-498, 2015.

S. Steinberg, Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease, Nat. Genet, vol.47, pp.445-447, 2015.

M. W. Logue, Two rare AKAP9 variants are associated with Alzheimer's disease in African Americans, Alzheimers Dement, vol.10, pp.609-618, 2014.

G. Jun, PLXNA4 is associated with Alzheimer disease and modulates tau phosphorylation, Ann. Neurol, vol.76, pp.379-392, 2014.

J. Hunkapiller, A rare coding variant alters UNC5C function and predisposes to Alzheimer's disease, Alzheimers Dement, vol.9, p.853, 2013.

M. K. Wetzel-smith, A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death, Nat. Med, vol.20, pp.1452-1457, 2014.

A. L. Richards, Exome arrays capture polygenic rare variant contributions to schizophrenia, Hum. Mol. Genet, vol.25, pp.1001-1007, 2016.

J. Wessel, Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility, Nat. Commun, vol.6, p.5897, 2015.

C. Igartua, Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma, Nat. Commun, vol.6, p.5965, 2015.

I. Tachmazidou, A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates, Nat. Commun, vol.4, p.2872, 2013.

J. R. Huyghe, Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion, Nat. Genet, vol.45, pp.197-201, 2013.

C. J. Willer, Y. Li, and G. R. Abecasis, METAL: fast and efficient meta-analysis of genomewide association scans, Bioinformatics, vol.26, pp.2190-2191, 2010.

, R Development Core Team. R: A Language and Environment for Statistical Computing ( R Foundation for Statistical Computing, 2014.

S. Das, Next-generation genotype imputation service and methods, Nat. Genet, vol.48, pp.1284-1287, 2016.

S. Mccarthy, A reference panel of 64,976 haplotypes for genotype imputation, Nat. Genet, vol.48, pp.1279-1283, 2016.

S. C. Jin, Coding variants in TREM2 increase risk for Alzheimer's disease, Hum. Mol. Genet, vol.23, pp.5838-5846, 2014.

Y. Lu, W. Liu, and X. Wang, TREM2 variants and risk of Alzheimer's disease: a meta-analysis, Neurol. Sci, vol.36, pp.1881-1888, 2015.

C. Cruchaga, GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease, Neuron, vol.78, pp.256-268, 2013.

, International Genomics of Alzheimer's Disease Consortium (IGAP).. Convergent genetic and expression data implicate immunity in Alzheimer's disease, Alzheimers Dement, vol.11, pp.658-671, 2015.

Y. Zhang, Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, vol.89, pp.37-53, 2016.

J. D. Milner, PLAID: a syndrome of complex patterns of disease and unique phenotypes, J. Clin. Immunol, vol.35, pp.527-530, 2015.

B. P. Fairfax, Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression, Science, vol.343, p.1246949, 2014.

S. Sekino, The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex, Cell Commun. Signal, vol.13, p.41, 2015.

J. C. Nolz, The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation, Curr. Biol, vol.16, pp.24-34, 2006.

J. Xing, A. R. Titus, and M. B. Humphrey, The TREM2-DAP12 signaling pathway in Nasu-Hakola disease: a molecular genetics perspective, Res. Rep. Biochem, vol.5, pp.89-100, 2015.

H. Neumann and K. Takahashi, Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis, J. Neuroimmunol, vol.184, pp.92-99, 2007.

M. M. Painter, TREM2 in CNS homeostasis and neurodegenerative disease, Mol. Neurodegener, vol.10, p.43, 2015.

J. D. Ulrich, In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis, Mol. Neurodegener, vol.8, p.13, 2013.

Y. Wang, TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model, Cell, vol.160, pp.1061-1071, 2015.

R. Rademakers, Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids, Nat. Genet, vol.44, pp.200-205, 2011.

L. S. Perlmutter, E. Barron, and H. C. Chui, Morphologic association between microglia and senile plaque amyloid in Alzheimer's disease, Neurosci. Lett, vol.119, pp.32-36, 1990.

H. M. Wisniewski, J. Wegiel, K. C. Wang, and B. Lach, Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer's disease, Acta Neuropathol, vol.84, pp.117-127, 1992.

C. Schwab, A. Klegeris, and P. L. Mcgeer, Inflammation in transgenic mouse models of neurodegenerative disorders, Biochim. Biophys. Acta, vol.1802, pp.889-902, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00616908

S. Hong, Complement and microglia mediate early synapse loss in Alzheimer mouse models, Science, vol.352, pp.712-716, 2016.

A. Olmos-alonso, Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology, Brain, vol.139, pp.891-907, 2016.

D. Paris, The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-? production and tau hyperphosphorylation, J. Biol. Chem, vol.289, pp.33927-33944, 2014.

M. Bao, CD2AP/SHIP1 complex positively regulates plasmacytoid dendritic cell receptor signaling by inhibiting the E3 ubiquitin ligase Cbl, J. Immunol, vol.189, pp.786-792, 2012.

T. Kurosaki and S. Tsukada, BLNK: connecting Syk and Btk to calcium signals, Immunity, vol.12, pp.1-5, 2000.

Y. Wang, TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques, J. Exp. Med, vol.213, pp.667-675, 2016.

P. Yuan, TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy, Neuron, vol.90, pp.724-739, 2016.

, MRC Centre for Neuropsychiatric Genetics and Genomics

, USA. 4 INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, issue.5

P. John, . Hussman-institute-for-human, . Genomics, . University-of-miami, F. Miami et al., 17 Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, 11 Dr. John T. Macdonald Foundation

, 23 Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Human Genetics Center

, 28 Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 37 Neurology Service and CIBERNED, vol.29

. Departments-of-medicine, . Geriatrics, . Gerontology, U. Neurology, . Of-mississippi-medical et al., 54 Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, data overview, quality control, and analytic methods are available at the following Synapse pages, respectively: syn3163039, syn6126114, and syn6090802. death, sex, RNA integrity number (RIN), tissue source, and RNA-seq flow cell. In the comprehensive model, we adjust for all these covariates, and brain cell type markers for five cell-type-specific genes (CD68 (microglia), CD34 (endothelial), OLIG2 (oligodendroglia), GFAP (astrocyte), ENO2 , most likely microgliosis, given that TREM2, PLCG2, and ABI3 are microglia-enriched genes 15 (Supplementary Fig. 12 and Supplementary Table 19). a NIAGADS-and NIA/NIH-sanctioned qualified-access data repository. Stage 1 CHARGE data are accessible by applying to dbGaP for all US cohorts and to Erasmus University for Rotterdam data. AGES primary data are not available owing to Icelandic laws, Dentistry and Biomedical Sciences

J. I. Goldstein, zCall: a rare variant caller for array-based genotyping: genetics and population analysis, Bioinformatics, vol.28, pp.2543-2545, 2012.

B. Devlin and K. Roeder, Genomic control for association studies, Biometrics, vol.55, pp.997-1004, 1999.

M. L. Grove, Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium, PLoS One, vol.8, p.68095, 2013.

N. Patterson, A. L. Price, and D. Reich, Population structure and eigenanalysis, PLoS Genet, vol.2, p.190, 2006.

B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis, Fast and accurate genotype imputation in genome-wide association studies through prephasing, Nat. Genet, vol.44, pp.955-959, 2012.

C. Fuchsberger, G. R. Abecasis, and D. Hinds, A. minimac2: faster genotype imputation, Bioinformatics, vol.31, pp.782-784, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01609428

R. Talluri and S. Shete, A linkage disequilibrium-based approach to selecting diseaseassociated rare variants, PLoS One, vol.8, p.69226, 2013.

P. Holmans, Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder, Am. J. Hum. Genet, vol.85, pp.13-24, 2009.

A. S. Lim, 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex, PLoS Genet, vol.10, p.1004792, 2014.

D. Jager and P. L. , Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci, Nat. Neurosci, vol.17, pp.1156-1163, 2014.

G. Chan, CD33 modulates TREM2: convergence of Alzheimer loci, Nat. Neurosci, vol.18, pp.1556-1558, 2015.