F. Kruiswijk, C. F. Labuschagne, and K. H. Vousden, p53 in survival, death and metabolichealth: a lifeguard with a licence to kill, Nature Reviews Molecular Cell Biology, vol.16, issue.7, pp.393-405, 2015.

C. F. Labuschagne, F. Zani, and K. H. Vousden, Control of metabolism by p53-Cancer and beyond, Biochimica et Biophysica Acta (BBA) -Reviews on Cancer, vol.1870, issue.1, pp.32-42, 2018.

J. Flöter, I. Kaymak, and A. Schulze, Regulation of metabolic activity by p53, Metabolites, vol.7, issue.2, p.21, 2017.

J. Liu, C. Zhang, W. Hu, and Z. Feng, Tumor suppressor p53 and metabolism, Journal of Molecular Cell Biology, vol.11, issue.4, pp.284-292, 2018.

V. Schmidt, R. Nagar, and L. Martinez, Control of nucleotide metabolism enables mutant p53's oncogenic gain-of-function activity, International Journal of Molecular Sciences, vol.18, issue.12, p.2759, 2017.

G. Blandino, F. Valenti, A. Sacconi, and S. Di-agostino, Wild-type and mutant p53 protein in mitochondrial dysfunction: emerging insights in cancer disease, Seminars in Cell & Developmental Biology, vol.18, pp.30163-30170, 2019.

G. D'orazi and M. Cirone, Mutant p53 and cellular stress pathways: a criminal alliance that promotes cancer progression, Cancers, vol.11, issue.5, p.614, 2019.

W. M. Kamp, P. Wang, and P. M. Hwang, TP53 mutation, mitochondria and cancer, Current Opinion in Genetics & Development, vol.38, pp.16-22, 2016.

F. Schwartzenberg-bar-yoseph, The tumor suppressor p53 downregulates glucose transporters GLUT1 and GLUT4 gene expression, Cancer Research, vol.64, issue.7, pp.2627-2633, 2004.

K. Kawauchi, K. Araki, K. Tobiume, and N. Tanaka, p53 regulates glucose metabolism through an IKK-NF-kB pathway and inhibits cell transformation, Nature Cell Biology, vol.10, issue.5, pp.611-618, 2008.

R. Boidot, F. Vegran, A. Meulle, A. Le-breton, C. Dessy et al., Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors, Cancer Research, vol.72, issue.4, pp.939-948, 2012.

K. Bensaad, A. Tsuruta, M. A. Selak, M. N. Vidal, K. Nakano et al., TIGAR, a p53-inducible regulator of glycolysis and apoptosis, Cell, vol.126, issue.1, pp.107-120, 2006.

C. Zhang, J. Liu, R. Wu, Y. Liang, M. Lin et al., Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD, Oncotarget, vol.5, issue.14, pp.5535-5546, 2014.

S. Ros, J. Flöter, I. Kaymak, C. Da-costa, A. Houddane et al., 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells, Oncogene, vol.36, issue.23, pp.3287-3299, 2017.

D. A. Franklin, Y. He, P. L. Leslie, A. P. Tikunov, N. Fenger et al., p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway, Scientific Reports, vol.6, p.38067, 2016.

H. Kim, J. Roe, J. Lee, E. Cho, and H. Youn, lates glucose metabolism by miR-34a, Biochemical and Biophysical Research Communications, vol.437, issue.2, pp.225-231, 2013.

H. Kondoh, M. E. Lleonart, J. Gil, J. Wang, P. Degan et al., Glycolytic enzymes can modulate cellular life span, Cancer Research, vol.65, issue.1, pp.177-185, 2005.

T. Contractor and C. R. Harris, p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2, Cancer Research, vol.72, issue.2, pp.560-567, 2012.

J. P. Morris, J. J. Yashinskie, R. Koche, R. Chandwani, S. Tian et al., a-Ketoglutarate links p53 to cell fate during tumour suppression, Nature, 2019.

S. Suzuki, T. Tanaka, M. V. Poyurovsky, H. Nagano, T. Mayama et al., Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.7461-7466, 2010.

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.7455-7460, 2010.

Y. Liu, Y. He, A. Jin, A. P. Tikunov, L. Zhou et al., Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation, Proceedings of the National Academy of Sciences, vol.11, issue.23, pp.2414-2422, 2014.

W. Assaily, D. A. Rubinger, K. Wheaton, Y. Lin, W. Ma et al., ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress, Molecular Cell, vol.44, issue.3, pp.491-501, 2011.

N. Sanchez-macedo, J. Feng, B. Faubert, N. Chang, A. Elia et al., Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model, Cell Death & Differentiation, vol.20, issue.4, pp.659-668, 2013.

D. Jiang, E. L. Lagory, D. K. Bro-z, K. T. Bieging, C. A. Brady et al., Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function, Cell Reports, vol.10, issue.7, pp.1096-1109, 2015.

S. Matoba, J. G. Kang, W. D. Patino, A. Wragg, M. Boehm et al., regulates mitochondrial respiration, Science, vol.312, issue.5780, pp.1650-1653, 2006.

J. Y. Park, P. Y. Wang, T. Matsumoto, H. J. Sung, W. Ma et al., p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content, Circulation Research, vol.105, issue.7, pp.705-712, 2009.

P. Stambolsky, L. Weisz, I. Shats, Y. Klein, N. Goldfinger et al., Regulation of AIF expression by p53, Cell Death & Differentiation, vol.13, issue.12, pp.2140-2149, 2006.

G. Achanta, R. Sasaki, L. Feng, J. S. Carew, W. Lu et al., Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma, The EMBO Journal, vol.24, pp.3482-3492, 2005.

T. S. Wong, S. Rajagopalan, F. M. Townsley, S. M. Freund, M. Petrovich et al., Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53, Nucleic Acids Research, vol.37, issue.2, pp.568-581, 2008.

Y. Yoshida, H. Izumi, T. Torigoe, H. Ishiguchi, H. Itoh et al., P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA, Cancer Research, vol.63, issue.13, pp.3729-3734, 2003.

M. Bakhanashvili, S. Grinberg, E. Bonda, A. J. Simon, S. Moshitch-moshkovitz et al., p53 in mitochondria enhances the accuracy of DNA synthesis, Cell Death & Differentiation, vol.15, issue.12, pp.1865-1874, 2008.

M. Bergeaud, L. Mathieu, A. Guillaume, U. Moll, B. Mignotte et al., Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F?F?-ATP synthase, Cell Cycle, vol.12, issue.17, pp.2781-2793, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01871462

A. Saleem, S. Iqbal, Y. Zhang, and D. A. Hood, Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle, The Australian Journal of Pharmacy: Cell Physiology, vol.308, issue.4, pp.319-329, 2015.

B. Kong, Q. Wang, E. Fung, K. Xue, and B. K. Tsang, p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers, Journal of Biological Chemistry, vol.289, issue.39, pp.27134-27145, 2014.

J. Li, S. Donath, Y. Li, D. Qin, B. S. Prabhakar et al., miR-30 regulates mitochondrial fission through targeting p53 and the dynaminrelated protein-1 pathway, PLoS Genetics, vol.6, issue.1, p.1000795, 2010.

J. Wang, J. Jiao, Q. Li, B. Long, K. Wang et al., miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1, Nature Medicine, vol.17, issue.1, pp.71-78, 2010.

N. Kitamura, Y. Nakamura, Y. Miyamoto, T. Miyamoto, K. Kabu et al., Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria, PLoS One, vol.6, issue.1, p.16060, 2011.

D. Kenzelmann-broz, S. Spano-mello, K. T. Bieging, D. Jiang, R. L. Dusek et al., Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses, Genes & Development, vol.27, issue.9, pp.1016-1031, 2013.

C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang et al., Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect, Proceedings of the National Academy of Sciences, vol.108, issue.39, pp.16259-16264, 2011.

Y. Miyamoto, N. Kitamura, Y. Nakamura, M. Futamura, T. Miyamoto et al., Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control, PLoS One, vol.6, issue.1, p.16054, 2011.

P. Jiang, W. Du, X. Wang, A. Mancuso, X. Gao et al., p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase, Nature Cell Biology, vol.13, issue.3, pp.310-316, 2011.

I. Goldstein and V. Rotter, Regulation of lipid metabolism by p53 e fighting two villains with one sword, Trends in Endocrinology and Metabolism, vol.23, issue.11, pp.567-575, 2012.

A. Parrales and T. Iwakuma, p53 as a regulator of lipid metabolism in cancer, International Journal of Molecular Sciences, vol.17, issue.12, p.2074, 2016.

S. Moon, C. Huang, S. L. Houlihan, K. Regunath, W. A. Freed-pastor et al., p53 represses the mevalonate pathway to mediate tumor suppression, Cell, vol.176, issue.3, pp.564-580, 2018.

P. Jiang, W. Du, A. Mancuso, K. E. Wellen, and X. Yang, Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence, Nature, vol.493, issue.7434, pp.689-693, 2013.

C. Deisenroth, Y. Itahana, L. Tollini, A. Jin, and Y. Zhang, p53-inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation, Journal of Biological Chemistry, vol.286, issue.32, pp.28343-28356, 2011.

R. D. Kirschner, K. Rother, G. A. Müller, and K. Engeland, The retinal dehydrogenase/reductase retSDR1/DHRS3gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes, Cell Cycle, vol.9, issue.11, pp.2177-2188, 2014.

A. Mirza, Q. Wu, L. Wang, T. Mcclanahan, W. R. Bishop et al., Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression, Oncogene, vol.22, issue.23, pp.3645-3654, 2003.

N. Rueda-rincon, K. Bloch, R. Derua, R. Vyas, A. Harms et al., p53 attenuates AKT signaling by modulating membrane phospholipid composition, Oncotarget, vol.6, issue.25, pp.21240-21254, 2015.

K. Kirschner, S. A. Samarajiwa, J. M. Cairns, S. Menon, P. A. Pérez-mancera et al., Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53, PLoS Genetics, vol.11, issue.3, p.1005053, 2015.

O. Moiseeva, V. Bourdeau, A. Roux, X. Deschênes-simard, and G. Ferbeyre, Mitochondrial dysfunction contributes to oncogene-induced senescence, Molecular and Cellular Biology, vol.29, issue.16, pp.4495-4507, 2009.

C. Quijano, L. Cao, M. M. Fergusson, H. Romero, J. Liu et al., Oncogene-induced senescence results in marked metabolic and bioenergetic alterations, Cell Cycle, vol.11, issue.7, pp.1383-1392, 2012.

I. Goldstein, O. Ezra, N. Rivlin, A. Molchadsky, S. Madar et al., p53, a novel regulator of lipid metabolism pathways, Journal of Hepatology, vol.56, issue.3, pp.656-662, 2012.

T. Ide, L. Brown-endres, K. Chu, P. P. Ongusaha, T. Ohtsuka et al., GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress, Molecular Cell, vol.36, issue.3, pp.379-392, 2009.

K. A. Jeffries and N. I. Krupenko, Ceramide signaling and p53 pathways, Advances in Cancer Research, vol.140, pp.191-215, 2018.

T. A. Taha, W. Osta, L. Kozhaya, J. Bielawski, K. R. Johnson et al., Down-regulation of sphingosine kinase-1 by DNA damage, Journal of Biological Chemistry, vol.279, pp.20546-20554, 2004.

L. A. Heffernan-stroud, K. L. Helke, R. W. Jenkins, A. De-costa, Y. A. Hannun et al., Defining a role for sphingosine kinase 1 in p53-dependent tumors, Oncogene, vol.31, issue.9, pp.1166-1175, 2011.

B. Fekry, K. A. Jeffries, A. Esmaeilniakooshkghazi, B. Ogretmen, S. A. Krupenko et al., CerS6Is a novel transcriptional target of p53 protein activated by non-genotoxic stress, Journal of Biological Chemistry, vol.291, issue.32, pp.16586-16596, 2016.

A. A. Shamseddine, C. J. Clarke, B. Carroll, M. V. Airola, S. Mohammed et al., P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest, Cell Death & Disease, vol.6, issue.10, p.10, 2015.

R. Xu, M. Garcia-barros, S. Wen, F. Li, C. Lin et al., Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2, Cell Death & Differentiation, vol.25, issue.5, pp.841-856, 2018.

B. Fekry, K. A. Jeffries, A. Esmaeilniakooshkghazi, Z. M. Szulc, K. J. Knagge et al., -ceramide is a natural regulatory ligand of p53 in cellular stress response, Nature Communications, 2018.

L. A. Hoeferlin, B. Fekry, B. Ogretmen, S. A. Krupenko, and N. I. Krupenko, Folate stress induces apoptosis via p53-dependent de Novo ceramide synthesis and up-regulation of ceramide synthase 6, Journal of Biological Chemistry, vol.288, issue.18, pp.12880-12890, 2013.

S. V. Torti and F. M. Torti, Iron and cancer: more ore to be mined, Nature Reviews Cancer, vol.13, issue.5, pp.342-355, 2013.

O. Weizer-stern, K. Adamsky, O. Margalit, O. Ashur-fabian, D. Givol et al., Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53, British Journal of Haematology, vol.138, issue.2, pp.253-262, 2007.

Y. Funauchi, C. Tanikawa, P. H. Lo, J. Mori, Y. Daigo et al., Regulation of iron homeostasis bythe p53-ISCU pathway, Scientific Reports, vol.2, issue.5, p.16497, 2015.

P. M. Hwang, F. Bunz, J. Yu, C. Rago, T. A. Chan et al., Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells, Nature Medicine, vol.7, issue.10, pp.1111-1117, 2001.

G. Liu and X. Chen, The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis, Oncogene, vol.21, issue.47, pp.7195-7204, 2002.

R. Shimizu, N. N. Lan, T. T. Tai, Y. Adachi, A. Kawazoe et al., p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron, Gene, vol.551, issue.1, pp.79-85, 2014.

P. Dongiovanni, A. L. Fracanzani, G. Cairo, C. P. Megazzini, S. Gatti et al., Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis, American Journal Of Pathology, vol.176, issue.2, pp.1006-1017, 2010.

W. G. An, M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny et al., Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha, Nature, vol.392, issue.6674, pp.405-408, 1998.

F. Saletta, Y. Suryo-rahmanto, E. Noulsri, and D. R. Richardson, Iron chelator-mediated alterations in gene expression: identification of novel ironregulated molecules that are molecular targets of hypoxia-inducible factor-1 and p53, Molecular Pharmacology, vol.77, issue.3, pp.443-458, 2010.

J. Shen, X. Sheng, Z. Chang, Q. Wu, S. Wang et al., Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulationof p53 localization, stability, and function, Cell Reports, vol.7, issue.1, pp.180-193, 2014.

J. Lee, H. Jang, E. Cho, and H. Youn, Ferritin binds and activates p53 under oxidative stress, Biochemical and Biophysical Research Communications, vol.389, issue.3, pp.399-404, 2009.

J. Zhang and X. Chen, p53 tumor suppressor and iron homeostasis, FEBS Journal, vol.286, issue.4, pp.620-629, 2018.

Y. Zhang, Y. Qian, J. Zhang, W. Yan, Y. Jung et al., Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2, Genes & Development, vol.31, issue.12, pp.1243-1256, 2017.

G. M. Palomo, T. Cerrato, R. Gargini, and J. Diaz-nido, Silencing of frataxin gene expression triggers p53-dependent apoptosis in human neuronlike cells, Human Molecular Genetics, vol.20, issue.14, pp.2807-2822, 2011.

T. Li, N. Kon, . Jiang, . Le, M. Tan et al., Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence, Cell, vol.149, issue.6, pp.1269-1283, 2012.

L. Jiang, N. Kon, T. Li, S. Wang, T. Su et al., Ferroptosis as a p53-mediated activity during tumor suppression, Nature, vol.520, issue.7545, pp.57-62, 2015.

S. Wang, D. Li, Y. Ou, . Jiang, C. Le et al., Acetylation is crucial for p53-mediated ferroptosis and tumor suppression, Cell Reports, vol.17, issue.2, pp.366-373, 2016.

Y. Wang, L. Yang, X. Zhang, W. Cui, Y. Liu et al., Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53, EMBO Reports, p.47563, 2019.

B. Chu, N. Kon, D. Chen, T. Li, T. Liu et al., ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway, Nature Cell Biology, vol.21, issue.5, pp.579-591, 2019.

Y. Ou, S. Wang, D. Li, B. Chu, and W. Gu, Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses, Proceedings of the National Academy of Sciences, vol.113, issue.44, pp.6806-6812, 2016.

M. Jennis, C. Kung, S. Basu, A. Budina-kolomets, J. I. Leu et al., An African-specific polymorphism in the TP53gene impairs p53 tumor suppressor function in a mouse model, Genes & Development, vol.30, issue.8, pp.918-930, 2016.

Y. Xie, S. Zhu, X. Song, X. Sun, Y. Fan et al., The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity, Cell Reports, vol.20, issue.7, pp.1692-1704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581142

A. Tarangelo, L. Magtanong, K. T. Bieging-rolett, Y. Li, J. Ye et al., p53 suppresses metabolic stress-induced ferroptosis in cancer cells, Cell Reports, vol.22, issue.3, pp.569-575, 2018.

R. G. Jones, D. R. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-Activated Protein Kinase induces a p53-dependent Metabolic checkpoint, Molecular Cell, vol.18, issue.3, pp.283-293, 2005.

M. A. Reid, W. Wang, K. R. Rosales, M. X. Welliver, M. Pan et al., The B55a subunit of PP2A Drivesa p53-dependent metabolic adaptation to glutamine deprivation, Molecular Cell, vol.50, issue.2, pp.200-211, 2013.

O. D. Maddocks, C. R. Berkers, S. M. Mason, L. Zheng, K. Blyth et al., Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells, Nature, vol.493, issue.7433, pp.542-546, 2013.

M. Tajan, A. K. Hock, J. Blagih, N. A. Robertson, C. F. Labuschagne et al., A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3, Cell Metabolism, vol.28, issue.5, pp.721-736, 2018.

X. H. Lowman, E. A. Hanse, Y. Yang, M. B. Gabra, T. Q. Tran et al., p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake, Cell Reports, vol.26, issue.11, pp.3051-3054, 2019.

Y. Ou, S. Wang, L. Jiang, B. Zheng, and W. Gu, p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation, Journal of Biological Chemistry, vol.290, issue.1, pp.457-466, 2015.

R. Riscal, E. Schrepfer, G. Arena, M. Y. Cissé, F. Bellvert et al., Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53, Molecular Cell, vol.62, issue.6, pp.890-902, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886397

J. M. Phang, Proline metabolism in cell regulation and cancer biology: recent advances and hypotheses, Antioxidants and Redox Signaling, vol.30, issue.4, pp.635-649, 2019.

K. Yoon, Y. Nakamura, and H. Arakawa, Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses, Journal of Human Genetics, vol.49, issue.3, pp.134-140, 2004.

K. Polyak, Y. Xia, J. L. Zweier, K. W. Kinzler, and B. Vogelstein, A model for p53-induced apoptosis, Nature, vol.389, issue.6648, pp.300-305, 1997.

I. Raimondi, Y. Ciribilli, P. Monti, A. Bisio, L. Pollegioni et al., P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements, PLoS One, vol.8, issue.7, p.69152, 2013.

C. Wei, Q. Wu, V. B. Vega, K. P. Chiu, P. Ng et al., A global map of p53 transcription-factor binding sites in the human genome, Cell, vol.124, issue.1, pp.207-219, 2006.

S. P. Donald, X. Y. Sun, C. A. Hu, J. Yu, J. M. Mei et al., Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species, Cancer Research, vol.61, issue.5, pp.1810-1815, 2001.

T. Nagano, A. Nakashima, K. Onishi, K. Kawai, Y. Awai et al., Proline dehydrogenase promotes senescence through the generation of reactive oxygen species, Journal of Cell Science, vol.130, issue.8, pp.1413-1420, 2017.

S. Pang, D. A. Lynn, J. Y. Lo, J. Paek, and S. P. Curran, SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation, Nature Communications, vol.5, p.5048, 2014.

L. Le, Y. Mao, L. Zhao, L. Li, J. Wu et al., p53 regulation of ammonia metabolism throughurea cycle controls polyamine biosynthesis, Nature, vol.567, issue.7747, pp.253-256, 2019.

H. Kim, J. Roe, J. Lee, I. Hwang, E. Cho et al., A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH, Biochemical and Biophysical Research Communications, vol.418, issue.4, pp.682-688, 2012.

K. Holzer, E. Drucker, S. Roessler, D. Dauch, F. Heinzmann et al., Proteomic Analysis Reveals GMP Synthetase as p53 repression taarget in liver cancer, American Journal Of Pathology, vol.187, issue.2, pp.228-235, 2017.

B. A. Reddy, J. A. Van-der-knaap, A. G. Bot, A. Mohd-sarip, D. H. Dekkers et al., Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization, Molecular Cell, vol.53, issue.3, pp.458-470, 2014.

P. M. Wilson, W. Fazzone, M. J. Labonte, H. Lenz, and R. D. Ladner, Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage, Nucleic Acids Research, vol.37, issue.1, pp.78-95, 2008.

H. Tanaka, H. Arakawa, T. Yamaguchi, K. Shiraishi, S. Fukuda et al., A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage, Nature, vol.404, issue.6773, pp.42-49, 2000.

K. Nakano, E. Bálint, M. Ashcroft, and K. H. Vousden, A ribonucleotide reductase gene is a transcriptional target of p53 and p73, Oncogene, vol.19, issue.37, pp.4283-4289, 2000.

Z. He, X. Hu, W. Liu, A. Dorrance, R. Garzon et al., P53 suppresses ribonucleotide reductase via inhibiting mTORC1, Oncotarget, vol.8, issue.25, pp.41422-41431, 2017.

A. A. Sablina, A. V. Budanov, G. V. Ilyinskaya, L. S. Agapova, J. E. Kravchenko et al., The antioxidant function of the p53 tumor suppressor, Nature Medicine, vol.11, issue.12, pp.1306-1313, 2005.

A. Matheu, A. Maraver, P. Klatt, I. Flores, I. Garcia-cao et al., Delayed ageing through damage protection by the Arf/p53 pathway, Nature, vol.448, issue.7151, pp.375-379, 2007.

K. Forrester, S. Ambs, S. E. Lupold, R. B. Kapust, E. A. Spillare et al., Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53, Proceedings of the National Academy of Sciences of the United States of America, vol.93, issue.6, pp.2442-2447, 1996.

S. P. Hussain, P. Amstad, P. He, A. Robles, S. Lupold et al., p53-Induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis, Cancer Research, vol.64, issue.7, pp.2350-2356, 2004.

M. Y. Kang, H. Kim, C. Piao, K. H. Lee, J. W. Hyun et al., The critical role of catalase in prooxidant and antioxidant function of p53, Cell Death & Differentiation, vol.20, issue.1, pp.117-129, 2012.

J. C. O'connor, D. M. Wallace, C. J. O'brien, and T. G. Cotter, A novel antioxidant function for the tumor-suppressor gene p53 in the retinal ganglion cell, Investigative Ophthalmology & Visual Science, vol.49, issue.10, pp.4237-4244, 2008.

S. Velasco-miguel, L. Buckbinder, P. Jean, L. Gelbert, R. Talbott et al., PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes, Oncogene, vol.18, issue.1, pp.127-137, 1999.

A. V. Budanov, T. Shoshani, A. Faerman, E. Zelin, I. Kamer et al., Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability, Oncogene, vol.21, issue.39, pp.6017-6031, 2002.

A. V. Budanov and M. Karin, p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling, Cell, vol.134, issue.3, pp.451-460, 2008.

S. H. Bae, S. H. Sung, S. Y. Oh, J. M. Lim, S. K. Lee et al., Sestrins activate Nrf2 by promoting p62-dependent autophagic Degradationof Keap1 and prevent oxidative liver damage, Cell Metabolism, vol.17, issue.1, pp.73-84, 2013.

S. Okamura, H. Arakawa, T. Tanaka, H. Nakanishi, C. C. Ng et al., p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis, Molecular Cell, vol.8, issue.1, pp.85-94, 2001.

R. Tomasini, A. A. Samir, M. Pebusque, E. L. Calvo, S. Totaro et al., P53-dependent expression of the stress-induced protein (SIP), European Journal of Cell Biology, vol.81, issue.5, pp.294-301, 2002.

P. N'guessan, L. Pouyet, G. Gosset, S. Hamlaoui, M. Seillier et al., Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis, Antioxidants and Redox Signaling, vol.15, issue.6, pp.1639-1653, 2011.

Y. Itahana, R. Han, S. Barbier, Z. Lei, S. Rozen et al., The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense, Oncogene, vol.34, issue.14, pp.1799-1810, 2014.

D. Italiano, A. M. Lena, G. Melino, and E. Candi, Identification of NCF2/ p67phox as a novel p53 target gene, Cell Cycle, vol.11, issue.24, pp.4589-4596, 2014.

S. K. Dhar, Y. Xu, Y. Chen, and D. K. St-clair, Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression, Journal of Biological Chemistry, vol.281, issue.31, pp.21698-21709, 2006.

Y. Zhao, L. Chaiswing, J. M. Velez, I. Batinic-haberle, N. H. Colburn et al., p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense proteinmanganese superoxide dismutase, Cancer Research, vol.65, issue.9, pp.3745-3750, 2005.

M. Trinei, M. Giorgio, A. Cicalese, S. Barozzi, A. Ventura et al., A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene, vol.21, issue.24, pp.3872-3878, 2002.

X. Guo, M. Disatnik, M. Monbureau, M. Shamloo, D. Mochly-rosen et al., Inhibition of mitochondrial fragmentation diminishes Huntington's diseaseeassociated neurodegeneration, Journal of Clinical Investigation, vol.123, issue.12, pp.5371-5388, 2013.

N. D. Marchenko, A. Zaika, and U. M. Moll, Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling, Journal of Biological Chemistry, vol.275, issue.21, pp.16202-16212, 2000.

J. I. Leu, .. Dumont, P. Hafey, M. Murphy, M. E. George et al., Mitochondrial p53 activates Bak and causes disruption of a BakeMcl1 complex, Nature Cell Biology, vol.6, issue.5, pp.443-450, 2004.

S. E. Eriksson, S. Ceder, V. J. Bykov, and K. G. Wiman, p53 as a hub in cellular redox regulation and therapeutic target in cancer, Journal of Molecular Cell Biology, vol.11, issue.4, pp.330-341, 2019.

H. Hafsi and P. Hainaut, Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence, Antioxidants and Redox Signaling, vol.15, issue.6, pp.1655-1667, 2011.

A. Maillet and S. Pervaiz, Redox regulation of p53, redox effectors regulated by p53: a subtle balance, Antioxidants and Redox Signaling, vol.16, issue.11, pp.1285-1294, 2012.

M. Niwa-kawakita, O. Ferhi, H. Soilihi, M. Le-bras, V. Lallemand-breitenbach et al., PML is a ROS sensor activating p53 upon oxidative stress, Journal of Experimental Medicine, vol.214, issue.11, pp.3197-3206, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02348554

S. Tessier, N. Martin-martin, H. De-thé, A. Carracedo, and V. Lallemand-breitenbach, Promyelocytic leukemia protein, a protein at the crossroad of oxidative stress and metabolism, Antioxidants and Redox Signaling, vol.26, issue.9, pp.432-444, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02441961

E. De-stanchina, E. Querido, M. Narita, R. V. Davuluri, P. P. Pandolfi et al., PML is a direct p53 target that modulates p53 effector functions, Molecular Cell, vol.13, issue.4, pp.523-535, 2004.

A. V. Vaseva, N. D. Marchenko, K. Ji, S. E. Tsirka, S. Holzmann et al., Cell, vol.149, issue.7, pp.1536-1548, 2012.

K. G. Eby, J. M. Rosenbluth, D. J. Mays, C. B. Marshall, C. E. Barton et al., ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy, Molecular Cancer, vol.9, issue.1, p.95, 2010.

W. Gao, Z. Shen, L. Shang, and X. Wang, Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death, Cell Death & Differentiation, vol.18, issue.10, pp.1598-1607, 2011.

D. Crighton, S. Wilkinson, J. O'prey, N. Syed, P. Smith et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis, Cell, vol.126, issue.1, pp.121-134, 2006.

A. Martoriati, G. Doumont, M. Alcalay, E. Bellefroid, P. G. Pelicci et al., dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53, Oncogene, vol.24, issue.8, pp.1461-1466, 2004.

Z. Feng, H. Zhang, A. J. Levine, and S. Jin, The coordinate regulation of the p53 and mTOR pathways in cells, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.23, pp.8204-8209, 2005.

E. Tasdemir, M. C. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-mergny et al., Regulation of autophagy by cytoplasmic p53, Nature Cell Biology, vol.10, issue.6, pp.676-687, 2008.

N. Tavernarakis, A. Pasparaki, E. Tasdemir, M. C. Maiuri, and G. Kroemer, The effects of p53 on whole organism longevity are mediated by autophagy, Autophagy, vol.4, issue.7, pp.870-873, 2014.

I. H. Lee, Y. Kawai, M. M. Fergusson, I. I. Rovira, A. J. Bishop et al., Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress, Science, vol.336, issue.6078, pp.225-228, 2012.

Y. Huo, H. Cai, I. Teplova, C. Bowman-colin, G. Chen et al., Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer, Cancer Discovery, vol.3, issue.8, pp.894-907, 2013.

J. Y. Guo, G. Karsli-uzunbas, R. Mathew, S. C. Aisner, J. J. Kamphorst et al., Autophagy suppresses progression of K-rasinduced lung tumors to oncocytomas and maintains lipid homeostasis, Genes & Development, vol.27, issue.13, pp.1447-1461, 2013.

M. T. Rosenfeldt, J. O'prey, J. P. Morton, C. Nixon, G. Mackay et al., p53 status determines the role of autophagy in pancreatic tumour development, Nature, vol.504, issue.7479, pp.296-300, 2013.

R. Okoshi, T. Ozaki, H. Yamamoto, K. Ando, N. Koida et al., Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress, Journal of Biological Chemistry, vol.283, issue.7, pp.3979-3987, 2008.

K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi, Cell cycle regulation via p53 phosphorylation by a 5 0 -AMP activated protein kinase activator, 5-aminoimidazole-4-Carboxamide-1-b-Ribofuranoside, in a human hepatocellular carcinoma cell line, Biochemical and Biophysical Research Communications, vol.287, issue.2, pp.562-567, 2001.

H. L. Armata, D. Golebiowski, D. Y. Jung, H. J. Ko, J. K. Kim et al., Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis, Molecular and Cellular Biology, vol.30, issue.24, pp.5787-5794, 2010.

Z. Feng, W. Hu, E. De-stanchina, A. K. Teresky, S. Jin et al., The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways, Cancer Research, vol.67, issue.7, pp.3043-3053, 2007.

N. N. Co, D. Iglesias, J. Celestino, S. Y. Kwan, S. C. Mok et al., Loss of LKB1 in high-grade endometrial carcinoma: LKB1 is a novel transcriptional target of p53, Cancer, vol.120, issue.22, pp.3457-3468, 2014.

K. Pappas, J. Xu, S. Zairis, L. Resnick-silverman, F. Abate et al., p53 maintains baseline expression of multiple tumor suppressor genes, Molecular Cancer Research, vol.15, issue.8, pp.1051-1062, 2017.

M. Cam, H. K. Bid, L. Xiao, G. P. Zambetti, P. J. Houghton et al., p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through two independent parallel pathways in the presence of DNA damage, Journal of Biological Chemistry, vol.289, issue.7, pp.4083-4094, 2014.

L. W. Ellisen, K. D. Ramsayer, C. M. Johannessen, A. Yang, H. Beppu et al., REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species, Molecular Cell, vol.10, issue.5, pp.995-1005, 2002.

V. Stambolic, D. Macpherson, D. Sas, Y. Lin, B. Snow et al., Regulation of PTEN transcription by p53, Molecular Cell, vol.8, issue.2, pp.317-325, 2001.

L. Buckbinder, R. Talbott, S. Velasco-miguel, I. Takenaka, B. Faha et al., Induction of the growth inhibitor IGF-binding protein 3 by p53, Nature, vol.377, issue.6550, pp.646-649, 1995.

T. Kawase, R. Ohki, T. Shibata, S. Tsutsumi, N. Kamimura et al., PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt, Cell, vol.136, issue.3, pp.535-550, 2009.

N. J. Webster, J. L. Resnik, D. B. Reichart, B. Strauss, M. Haas et al., Repression of the insulin receptor promoter by the tumor suppressor gene product p53: a possible mechanism for receptor overexpression in breast cancer, Cancer Research, vol.56, issue.12, pp.2781-2788, 1996.

M. Ashcroft, R. L. Ludwig, D. B. Woods, T. D. Copeland, H. O. Weber et al., Phosphorylation of HDM2 by Akt, Oncogene, vol.21, issue.13, pp.1955-1962, 2002.

B. P. Zhou, Y. Liao, W. Xia, Y. Zou, B. Spohn et al., HER-2/ neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation, Nature Cell Biology, vol.3, issue.11, pp.973-982, 2001.

D. Chen, M. Li, J. Luo, and W. Gu, Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function, Journal of Biological Chemistry, vol.278, issue.16, pp.13595-13598, 2003.

R. Alarcon, C. Koumenis, R. K. Geyer, C. G. Maki, and A. J. Giaccia, Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation, Cancer Research, vol.59, issue.24, pp.6046-6051, 1999.

Y. Zhu, X. O. Mao, Y. Sun, Z. Xia, and D. A. Greenberg, p38 mitogenactivated protein kinase mediates hypoxic regulation of Mdm2 and p53 in Neurons, Journal of Biological Chemistry, vol.277, issue.25, pp.22909-22914, 2002.

S. Lee, C. Lim, J. Min, J. Lee, Y. Kim et al., Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2, Cell Death & Differentiation, vol.14, issue.6, pp.1106-1116, 2007.

S. Galban, J. L. Martindale, K. Mazan-mamczarz, I. Lopez-de-silanes, J. Fan et al., Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells, Molecular and Cellular Biology, vol.23, issue.20, pp.7083-7095, 2003.

E. M. Hammond, N. C. Denko, M. J. Dorie, R. T. Abraham, and A. J. Giaccia, Hypoxia links ATR and p53 through replication arrest, Molecular and Cellular Biology, vol.22, issue.6, pp.1834-1843, 2002.

N. S. Chandel, M. G. Vander-heiden, C. B. Thompson, and P. T. Schumacker, Redox regulation of p53 during hypoxia, Oncogene, vol.19, issue.34, pp.3840-3848, 2000.

C. Schmaltz, P. H. Hardenbergh, A. Wells, and D. E. Fisher, Regulation of proliferation-survival decisions during tumor cell hypoxia, Molecular and Cellular Biology, vol.18, issue.5, pp.2845-2854, 1998.

L. W. Thomas and M. Ashcroft, Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria, Cellular and Molecular Life Sciences, vol.76, issue.9, pp.1759-1777, 2019.

A. Sermeus and C. Michiels, Reciprocal influence of the p53 and the hypoxic pathways, Cell Death & Disease, vol.2, issue.5, p.11, 2011.

T. J. Humpton and K. H. Vousden, Regulation of cellular metabolism and hypoxia by p53, Cold Spring Harbor Perspectives in Medicine, vol.6, issue.7, p.26146, 2016.

A. Tameemi, W. Dale, T. P. Al-jumaily, R. M. Forsyth, and N. R. , Hypoxiamodified cancer cell metabolism, Frontiers of Cell & Developmental Biology, vol.7, p.4, 2019.

E. M. Hammond, D. J. Mandell, A. Salim, A. J. Krieg, T. M. Johnson et al., Genome-wide analysis of p53 under hypoxic conditions, Molecular and Cellular Biology, vol.26, issue.9, pp.3492-3504, 2006.

G. Xenaki, T. Ontikatze, R. Rajendran, I. J. Stratford, C. Dive et al., PCAF is an HIF-1a cofactor that regulates p53 transcriptional activity in hypoxia, Oncogene, vol.27, issue.44, pp.5785-5796, 2008.

C. Koumenis, R. Alarcon, E. Hammond, P. Sutphin, W. Hoffman et al., Regulation of p53 by hypoxia: Dissociation of transcriptional repression and apoptosis from p53-dependent transactivation, Molecular and Cellular Biology, vol.21, issue.4, pp.1297-1310, 2001.

E. Y. Wang, H. Gang, Y. Aviv, R. Dhingra, V. Margulets et al., p53 mediates autophagy and cell death by a mechanism contingent on Bnip3, Hypertension, vol.62, issue.1, pp.70-77, 2013.

P. Fei, W. Wang, S. Kim, S. Wang, T. F. Burns et al., Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth, Cancer Cell, vol.6, issue.6, pp.597-609, 2004.

A. Ito, Y. Kawaguchi, C. Lai, J. J. Kovacs, Y. Higashimoto et al., MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation, The EMBO Journal, vol.21, issue.22, pp.6236-6245, 2002.

N. A. Barlev, L. Liu, N. H. Chehab, K. Mansfield, K. G. Harris et al., Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases, Molecular Cell, vol.8, issue.6, pp.1243-1254, 2001.

W. Hua, J. Qi, Q. Cai, E. Carnahan, M. Ayala-ramirez et al., HDAC8 regulates long-term hematopoietic stem-cell maintenance under stress by modulating p53 activity, Blood, vol.130, issue.24, pp.2619-2630, 2017.

W. Yan, S. Liu, E. Xu, J. Zhang, Y. Zhang et al., Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8, Oncogene, vol.32, issue.5, pp.599-609, 2012.

S. Zhao, W. Xu, W. Jiang, W. Yu, Y. Lin et al., Regulation of cellular metabolism by protein lysine acetylation, Science, vol.327, issue.5968, pp.1000-1004, 2010.

S. C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball et al., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey, Molecular Cell, vol.23, issue.4, pp.607-618, 2006.

K. G. Mclure, M. Takagi, and M. B. Kastan, NADþ Modulates p53 DNA Binding Specificity and cellular reprogramming, Molecular and Cellular Biology, vol.24, issue.22, pp.9958-9967, 2004.

A. L. Ong and T. S. Ramasamy, Role of Sirtuin 1-p53 regulatory axis in aging, cancer and Ageing, Ageing Research Reviews, vol.43, pp.64-80, 2018.

H. Cheng, R. Mostoslavsky, S. Saito, J. P. Manis, Y. Gu et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.10794-10799, 2003.

M. Han, E. Song, Y. Guo, X. Ou, C. Mantel et al., SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization, Cell Stem Cell, vol.2, issue.3, pp.241-251, 2008.

Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin et al., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.5968, pp.10230-10235, 2010.

S. Nemoto, M. M. Fergusson, and T. Finkel, Nutrient availability regulates SIRT1 through a forkhead-dependent pathway, Science, vol.306, issue.5704, pp.2105-2108, 2004.

A. Naqvi, T. A. Hoffman, J. Dericco, A. Kumar, C. Kim et al., A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression, Human Molecular Genetics, vol.19, issue.21, pp.4123-4133, 2010.

M. Yamakuchi, M. Ferlito, and C. J. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis, Proceedings of the National Academy of Sciences, vol.105, issue.36, pp.13421-13426, 2008.

H. Amano, A. Chaudhury, C. Rodriguez-aguayo, L. Lu, V. Akhanov et al., Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease, Cell Metabolism, vol.29, issue.6, pp.1274-1279, 2019.

E. Sahin, S. Colla, M. Liesa, J. Moslehi, F. L. Müller et al., Telomere dysfunction induces metabolic and mitochondrial compromise, Nature, vol.470, issue.7334, pp.359-365, 2011.

N. Sen, Y. K. Satija, and S. Das, PGC-1a, a key modulator of p53, promotes cell survival upon metabolic stress, Molecular Cell, vol.44, issue.4, pp.621-634, 2011.

P. Hallenborg, E. Fjaere, B. Liaset, R. K. Petersen, I. Murano et al., p53 regulates expression of uncoupling protein 1 through binding and repression of PPARg coactivator-1a, American Journal of Physiology-Endocrinology and Metabolism, vol.310, issue.2, pp.116-128, 2016.

A. Saleem, P. J. Adhihetty, and D. A. Hood, Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle, Physiological Genomics, vol.37, issue.1, pp.58-66, 2009.

A. Saleem and D. A. Hood, Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfammitochondrial DNA complex in skeletal muscle, The Journal of Physiology, vol.591, issue.14, pp.3625-3636, 2013.

A. Safdar, K. Khrapko, J. M. Flynn, A. Saleem, M. Lisio et al., Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice, pp.1-18, 2016.

K. Beyfuss and D. A. Hood, A systematic review of p53 regulation of oxidative stress in skeletal muscle, Redox Report, vol.23, issue.1, pp.100-117, 2018.

T. W. Mak, L. Hauck, D. Grothe, and F. Billia, 2017. p53 regulates the cardiac transcriptome, Proceedings of the National Academy of Sciences, vol.114, issue.9, pp.2331-2336

R. Gogna, E. Madan, M. Khan, U. Pati, and P. Kuppusamy, p53's choice of myocardial death or survival: oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys 118acety-lation, EMBO Molecular Medicine, vol.5, issue.11, pp.1662-1683, 2013.

J. Krstic, M. Galhuber, T. Schulz, M. Schupp, and A. Prokesch, p53 as a Dichotomous regulator of liver disease: the dose makes the medicine, International Journal of Molecular Sciences, vol.19, issue.3, p.921, 2018.

A. Prokesch, F. A. Graef, T. Madl, J. Kahlhofer, S. Heidenreich et al., Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis, The FASEB Journal, vol.31, issue.2, pp.732-742, 2017.

N. Yahagi, H. Shimano, T. Matsuzaka, M. Sekiya, Y. Najima et al., p53 involvement in the pathogenesis of fatty liver disease, Journal of Biological Chemistry, vol.279, issue.20, pp.20571-20575, 2004.

R. Homayounfar, M. Jeddi-tehrani, M. Cheraghpour, A. Ghorbani, and H. Zand, Relationship of p53 accumulation in peripheral tissues of high-fat dietinduced obese rats with decrease in metabolic and oncogenic signaling of insulin, General and Comparative Endocrinology, vol.214, pp.134-139, 2015.

J. Kim, L. Yu, W. Chen, Y. Xu, M. Wu et al., Wild-type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation, Cancer Cell, vol.35, issue.2, pp.191-198, 2019.

P. Zhang, B. Tu, H. Wang, Z. Cao, M. Tang et al., Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion, Proceedings of the National Academy of Sciences, vol.111, issue.29, pp.10684-10689, 2014.

S. Wang, G. Yu, L. Jiang, T. Li, Q. Lin et al., p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene, Cell Cycle, vol.12, issue.5, pp.753-761, 2014.

I. Goldstein, K. Yizhak, S. Madar, N. Goldfinger, E. Ruppin et al., p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production, Cancer & Metabolism, vol.1, issue.1, p.1, 2013.

D. Franck, L. Tracy, H. L. Armata, C. L. Delaney, D. Y. Jung et al., Glucose tolerance in mice is linked to the dose of the p53 transactivation domain, Endocrine Research, issue.3, pp.139-150, 2012.

X. Wang, X. Zhao, X. Gao, Y. Mei, and M. Wu, A new role of p53 in regulating lipid metabolism, Journal of Molecular Cell Biology, vol.5, issue.2, pp.147-150, 2013.

Z. Derdak, K. A. Villegas, R. Harb, A. M. Wu, A. Sousa et al., Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease, Journal of Hepatology, vol.58, issue.4, pp.785-791, 2013.

A. Bist, C. J. Fielding, and P. E. Fielding, p53 regulates Caveolin gene transcription, cell cholesterol, and growth by a novel mechanism, Biochemistry, vol.39, issue.8, 2000.

J. Krstic, I. Reinisch, M. Schupp, T. Schulz, and A. Prokesch, p53 functions in adipose tissue metabolism and homeostasis, International Journal of Molecular Sciences, vol.19, issue.9, p.2622, 2018.

M. Bazuine, K. G. Stenkula, M. Cam, M. Arroyo, and S. W. Cushman, Guardian of corpulence: a hypothesis on p53 signaling in the fat cell, Clinical Lipidology, vol.4, issue.2, pp.231-243, 2009.

A. Molchadsky, I. Shats, N. Goldfinger, M. Pevsner-fischer, M. Olson et al., p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner, PLoS One, vol.3, issue.11, p.3707, 2008.

Q. Huang, M. Liu, X. Du, R. Zhang, Y. Xue et al., Role of p53 in preadipocyte differentiation, Cell Biology International, vol.38, issue.12, pp.1384-1393, 2014.

N. Okita, N. Ishikawa, Y. Mizunoe, M. Oku, W. Nagai et al., Inhibitory effect of p53 on mitochondrial content and function during adipogenesis, Biochemical and Biophysical Research Communications, vol.446, issue.1, pp.91-97, 2014.

N. Yahagi, H. Shimano, T. Matsuzaka, Y. Najima, M. Sekiya et al., p53 activation in adipocytes of obese mice, Journal of Biological Chemistry, vol.278, issue.28, pp.25395-25400, 2003.

A. Molchadsky, O. Ezra, P. G. Amendola, D. Krantz, I. Kogan-sakin et al., p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity, Cell Death & Differentiation, vol.20, issue.5, pp.774-783, 2013.

O. Al-massadi, B. Porteiro, D. Kuhlow, M. Köhler, M. J. Gonzalez-rellan et al., Pharmacological and genetic manipulation of p53 in Brown fat at adult but not embryonic stages regulates thermogenesis and body weight in male mice, Endocrinology, vol.157, issue.7, pp.2735-2749, 2016.

N. Kon, D. Wang, T. Li, L. Jiang, L. Qiang et al., Inhibition of Mdmx (Mdm4) in vivo induces anti-obesity effects, Oncotarget, vol.9, issue.7, pp.7282-7297, 2018.

Y. Zhang, S. X. Zeng, Q. Hao, and H. Lu, Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner, Developmental Biology, vol.423, issue.1, pp.34-45, 2017.

S. Tornovsky-babeay, D. Dadon, O. Ziv, E. Tzipilevich, T. Kadosh et al., Type 2 diabetes and congenital hyperinsulinism cause DNA Double-strand breaksand p53 activity in b cells, Cell Metabolism, vol.19, issue.1, pp.109-121, 2014.

A. Hoshino, M. Ariyoshi, Y. Okawa, S. Kaimoto, M. Uchihashi et al., Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic-cell function in diabetes, Proceedings of the National Academy of Sciences, vol.111, issue.8, pp.3116-3121, 2014.

N. Kon, J. Zhong, L. Qiang, D. Accili, and W. Gu, Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice, Journal of Biological Chemistry, vol.287, issue.7, pp.5102-5111, 2012.

C. Hinault, D. Kawamori, C. W. Liew, B. Maier, J. Hu et al., D40 isoform of p53 controls cell proliferation and glucose homeostasis in mice, Diabetes, vol.60, issue.4, pp.1210-1222, 2011.

X. Li, Z. Liu, J. Yang, B. Wang, X. Jiang et al., The MDM2ep53epyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic, Nature Communications, vol.7, pp.1-14, 2016.

T. Minamino, M. Orimo, I. Shimizu, T. Kunieda, M. Yokoyama et al., A crucial role for adipose tissue p53 in the regulation of insulin resistance, Nature Medicine, vol.15, issue.9, pp.1-7, 2009.

F. J. Ortega, J. M. Moreno-navarrete, D. Mayas, M. Serino, J. I. Rodriguez-hermosa et al., Inflammation and insulin resistance exert dual effects on adipose tissue tumor protein 53 expression, International Journal of Obesity, vol.38, issue.5, pp.737-745, 2014.

K. J. Gaulton, C. J. Willer, Y. Li, L. J. Scott, K. N. Conneely et al., Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes, Diabetes, vol.57, issue.11, pp.3136-3144, 2008.

K. S. Burgdorf, N. Grarup, J. M. Justesen, M. N. Harder, D. R. Witte et al., Studies of the association of Arg72Pro of tumor suppressor protein p53 with type 2 diabetes in a combined analysis of 55,521 Europeans, PLoS One, vol.6, issue.1, p.15813, 2011.

C. Kung, J. I. Leu, .. Basu, S. Khaku, S. Anokye-danso et al., The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction, Cell Reports, vol.14, issue.10, pp.2413-2425, 2016.

H. Yuan, X. Zhang, X. Huang, Y. Lu, W. Tang et al., NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of b-cells via JNK, p38 MAPK and p53 pathways, PLoS One, vol.5, issue.12, p.15726, 2010.

B. Vergoni, P. Cornejo, J. Gilleron, M. Djedaini, F. Ceppo et al., DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes, Diabetes, vol.65, issue.10, pp.3062-3074, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01345698

P. Secchiero, B. Toffoli, E. Melloni, C. Agnoletto, L. Monasta et al., The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40, Acta Diabetologica, vol.50, issue.6, pp.899-906, 2013.

M. Yokoyama, S. Okada, A. Nakagomi, J. Moriya, I. Shimizu et al., Inhibition of endothelial p53 ImprovesMetabolic abnormalities related to dietary obesity, Cell Reports, vol.7, issue.5, pp.1691-1703, 2014.

D. A. Velasquez, G. Martinez, A. Romero, M. J. Vazquez, K. D. Boit et al., The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin, Diabetes, vol.60, issue.4, pp.1177-1185, 2011.

G. C. Farrell, C. Z. Larter, J. Y. Hou, R. H. Zhang, M. M. Yeh et al., Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression, Journal of Gastroenterology and Hepatology, vol.24, issue.3, pp.443-452, 2009.

K. Tomita, T. Teratani, T. Suzuki, T. Oshikawa, H. Yokoyama et al., p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice, Journal of Hepatology, vol.57, issue.4, pp.837-843, 2012.

A. Panasiuk, J. Dzieciol, B. Panasiuk, and D. Prokopowicz, Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease, World Journal of Gastroenterology, vol.12, issue.38, pp.6198-6202, 2006.

T. Kodama, T. Takehara, H. Hikita, S. Shimizu, M. Shigekawa et al., Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice, Journal of Clinical Investigation, vol.121, issue.8, pp.3343-3356, 2011.

B. Porteiro, M. F. Fondevila, X. Buque, M. J. Gonzalez-rellan, U. Fernandez et al., Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis, Molecular Metabolism, vol.8, pp.132-143, 2018.

Y. Itahana and K. Itahana, Emerging roles of p53 family members in glucose metabolism, International Journal of Molecular Sciences, vol.19, issue.3, p.776, 2018.

E. Candi, A. Smirnov, E. Panatta, A. M. Lena, F. Novelli et al., Metabolic pathways regulated by p63, Biochem Biophysic Res Commun, vol.482, issue.3, pp.440-444, 2017.

M. Napoli and E. R. Flores, The p53 family orchestrates the regulation of metabolism: physiological regulation and implications for cancer therapy, British Journal of Cancer, vol.116, issue.2, pp.149-155, 2016.

P. Ruiz-lozano, M. L. Hixon, M. W. Wagner, A. I. Flores, S. Ikawa et al., p53 is a transcriptional activator of the musclespecific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression, Cell Growth & Differentiation, vol.10, issue.5, pp.295-306, 1999.

S. P. Mathupala, C. Heese, and P. L. Pedersen, The type II of hehokinase promoter contains funcionally active response elements for the tumor suppressor p53, Journal of Biological Chemistry, vol.272, issue.36, pp.22776-22780, 1997.

Z. Andrysik, M. D. Galbraith, A. L. Guarnieri, S. Zaccara, K. D. Sullivan et al., Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity, Genome Research, vol.27, issue.10, pp.1645-1657, 2017.

M. Tan, S. Li, M. Swaroop, K. Guan, L. W. Oberley et al., Transcriptional activation of the human glutathione peroxidase promoter by p53, Journal of Biological Chemistry, vol.274, issue.17, pp.12061-12066, 1999.

S. M. Lehar, M. Nacht, T. Jacks, C. A. Vater, T. Chittenden et al., Identification and cloning of EI24, a gene induced by p53 in etoposidetreated cells, Oncogene, vol.12, issue.6, pp.1181-1187, 1996.