N. R. Hill, Global Prevalence of Chronic Kidney Disease -A Systematic Review and Meta-Analysis, PLOS ONE, vol.11, p.158765, 2016.

M. Gori, Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction, Eur. Heart J, vol.35, pp.3442-3451, 2014.

A. S. Go, G. M. Chertow, D. Fan, C. E. Mcculloch, and C. Hsu, Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization, N. Engl. J. Med, vol.351, pp.1296-1305, 2004.

M. Park, Associations between kidney function and subclinical cardiac abnormalities in CKD, J. Am. Soc. Nephrol. JASN, vol.23, pp.1725-1734, 2012.

M. I. Yilmaz, Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.26, pp.3537-3543, 2011.

T. Kopel, Endothelium-Dependent and -Independent Vascular Function in Advanced Chronic Kidney Disease, Clin. J. Am. Soc. Nephrol. CJASN, vol.12, pp.1588-1594, 2017.

J. C. Schefold, G. Filippatos, G. Hasenfuss, S. D. Anker, and S. Von-haehling, Heart failure and kidney dysfunction: epidemiology, mechanisms and management, Nat. Rev. Nephrol, vol.12, pp.610-623, 2016.

T. Yoshida, M. Yamashita, C. Horimai, and M. Hayashi, Smooth Muscle-Selective Nuclear Factor-?B Inhibition Reduces Phosphate-Induced Arterial Medial Calcification in Mice With Chronic Kidney Disease, J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis, vol.6, 2017.

A. Erdely, G. Freshour, Y. Tain, K. Engels, and C. Baylis, DOCA/NaCl-induced chronic kidney disease: a comparison of renal nitric oxide production in resistant and susceptible rat strains, Am. J. Physiol. Renal Physiol, vol.292, pp.192-196, 2007.

S. R. Mulay, Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice, Am. J. Physiol. Renal Physiol, vol.310, pp.785-795, 2016.

M. A. Masum, O. Ichii, Y. H. Elewa, T. Nakamura, and Y. Kon, Local CD34-positive capillaries decrease in mouse models of kidney disease associating with the severity of glomerular and tubulointerstitial lesions, BMC Nephrol, vol.18, p.280, 2017.

S. Neuburg, Genetic background influences cardiac phenotype in murine chronic kidney disease, Nephrol. Dial. Transplant, vol.33, pp.1129-1137, 2018.

D. Landau, L. London, I. Bandach, and Y. Segev, The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor pathway is disturbed in a rat model of chronic kidney disease related anemia, PloS One, vol.13, p.196684, 2018.

E. Gravesen, Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification, PloS One, vol.13, p.190820, 2018.

J. Yin, Renalase attenuates hypertension, renal injury and cardiac remodelling in rats with subtotal nephrectomy, J. Cell. Mol. Med, vol.20, pp.1106-1117, 2016.

H. Yang, Y. Zuo, and A. B. Fogo, Models of chronic kidney disease, Drug Discov. Today Dis. Models, vol.7, pp.13-19, 2010.

A. Leelahavanichkul, Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model, Kidney Int, vol.78, pp.1136-1153, 2010.

J. Maupoint, Selective Vascular Endothelial Protection Reduces Cardiac Dysfunction in Chronic Heart Failure, Circ. Heart Fail, vol.9, p.2895, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02296623

E. Gomez, Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B, J. Mol. Cell. Cardiol, vol.52, pp.1257-1264, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00801304

M. Vercauteren, Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure, Circulation, vol.114, pp.2498-2507, 2006.

L. Ma and A. B. Fogo, Model of robust induction of glomerulosclerosis in mice: importance of genetic background, Kidney Int, vol.64, pp.350-355, 2003.

A. M. Siedlecki, X. Jin, and A. J. Muslin, Uremic cardiac hypertrophy is reversed by rapamycin but not by lowering of blood pressure, Kidney Int, vol.75, pp.800-808, 2009.

H. Han, p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes, J. Am. Heart Assoc, vol.4, p.1852, 2015.

Y. Li, Angiotensin (1-7) prevent heart dysfunction and left ventricular remodeling caused by renal dysfunction in 5/6 nephrectomy mice, Hypertens. Res. Off. J. Jpn. Soc. Hypertens, vol.32, pp.369-374, 2009.

P. D. Winterberg, R. Jiang, J. T. Maxwell, B. Wang, and M. B. Wagner, Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD), Physiol. Rep, vol.4, 2016.

C. Wanner, K. Amann, and T. Shoji, The heart and vascular system in dialysis, Lancet Lond. Engl, vol.388, pp.276-284, 2016.

B. Sato, Relation of plasma indoxyl sulfate levels and estimated glomerular filtration rate to left ventricular diastolic dysfunction, Am. J. Cardiol, vol.111, pp.712-716, 2013.

A. Gueret, Vascular Smooth Muscle Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial Infarction. Hypertens. Dallas Tex, vol.67, pp.717-723, 1979.
URL : https://hal.archives-ouvertes.fr/inserm-02296624

R. Kobayashi, An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model, Kidney Int, vol.91, pp.1115-1125, 2017.

K. Wachtell, Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. Losartan Intervention for Endpoint Reduction, Am. Heart J, vol.143, pp.319-326, 2002.

J. Chong, J. Fotheringham, C. Tomson, and T. Ellam, Renal albumin excretion in healthy young adults and its association with mortality risk in the US population, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, 2018.

,

S. B. Gurley, Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice, Am. J. Physiol. Renal Physiol, vol.298, pp.788-795, 2010.

L. O. Lerman, Animal Models of Hypertension: A Scientific Statement From the, American Heart Association. Hypertens. Dallas Tex, vol.73, pp.87-120, 1979.

J. M. Luther and A. B. Fogo, Under pressure-how to assess blood pressure in rodents: tail-cuff?, Kidney Int, vol.96, pp.34-36, 2019.

O. Jung, Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease, PloS One, vol.5, p.11979, 2010.

J. Wei, A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice, Am. J. Physiol. Renal Physiol, vol.314, pp.1008-1019, 2018.

F. Stam, Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study, J. Am. Soc. Nephrol. JASN, vol.17, pp.537-545, 2006.

T. Li, C. Gua, B. Wu, and Y. Chen, Increased circulating trimethylamine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease, Biochem. Biophys. Res. Commun, vol.495, pp.2071-2077, 2018.

M. D'-apolito, Urea-induced ROS cause endothelial dysfunction in chronic renal failure, Atherosclerosis, vol.239, pp.393-400, 2015.

K. L. Liu, Vascular function of the mesenteric artery isolated from thyroid hormone receptor-? knockout mice, J. Vasc. Res, vol.51, pp.350-359, 2014.

M. J. Ryan, S. P. Didion, D. R. Davis, F. M. Faraci, and C. D. Sigmund, Endothelial dysfunction and blood pressure variability in selected inbred mouse strains, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.42-48, 2002.

S. Timmermans, M. Van-montagu, and C. Libert, Complete overview of protein-inactivating sequence variations in 36 sequenced mouse inbred strains, Proc. Natl. Acad. Sci. USA, vol.114, pp.9158-9163, 2017.