T. Tzotzas, C. Desrumaux, and L. Lagrost, Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor, Obes Rev, vol.10, pp.403-411, 2009.

X. C. Jiang, J. W. Hussain, and M. , The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism, Nutr Metab (Lond), vol.2012, p.75

X. C. Jiang, A. R. Tall, S. Qin, M. Lin, M. Schneider et al., Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E, J Biol Chem, vol.277, pp.31850-31856, 2002.

C. Desrumaux, V. Deckert, S. Lemaire-ewing, C. Mossiat, A. Athias et al., Plasma phospholipid transfer protein deficiency in mice is associated with a reduced thrombotic response to acute intravascular oxidative stress, Arterioscler Thromb Vasc Biol, vol.30, pp.2452-2457, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02462980

A. Schlitt, J. Liu, D. Yan, M. Mondragon-escorpizo, A. J. Norin et al., Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice, Biochim Biophys Acta, vol.1733, pp.187-191, 2005.

L. Shelly, L. Royer, T. Sand, H. Jensen, and Y. Luo, Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice, J Lipid Res, vol.49, pp.773-781, 2008.

D. T. Valenta, N. Ogier, G. Bradshaw, A. S. Black, D. J. Bonnet et al., Atheroprotective potential of macrophage-derived phospholipid transfer protein in low-density lipoprotein receptor-deficient mice is overcome by apolipoprotein AI overexpression, Arterioscler Thromb Vasc Biol, vol.26, pp.1572-1578, 2006.

S. Vuletic, W. Dong, G. Wolfbauer, C. Tang, and J. J. Albers, PLTP regulates STAT3 and NFkappaB in differentiated THP1 cells and human monocyte-derived macrophages, Biochim Biophys Acta, vol.1813, 2011.

N. Sakalihasan, R. Limet, and O. D. Defawe, Abdominal aortic aneurysm, Lancet, vol.365, pp.1577-1589, 2005.

J. Golledge, J. Muller, A. Daugherty, and P. Norman, Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler, Thromb Vasc Biol, vol.26, pp.2605-2613, 2006.

S. H. Forsdahl, K. Singh, S. Solberg, and B. K. Jacobsen, Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromsø Study, Circulation, vol.119, pp.2202-2208, 1994.

P. K. Shah, Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm, Circulation, vol.96, pp.2115-2117, 1997.

W. H. Pearce and V. P. Shively, Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs, Ann N Y Acad Sci, vol.1085, pp.117-132, 2006.

T. Freestone, R. J. Turner, A. Coady, D. J. Higman, R. M. Greenhalgh et al., Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm, Arterioscler Thromb Vasc Biol, vol.15, pp.1145-1151, 1995.

F. Aziz and H. Kuivaniemi, Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm, Ann Vasc Surg, vol.21, pp.392-401, 2007.

E. Petersen, F. Wågberg, and K. A. Angquist, Proteolysis of the abdominal aortic aneurysm wall and the association with rupture, Eur J Vasc Endovasc Surg, vol.23, pp.153-157, 2002.

G. M. Longo, W. Xiong, T. C. Greiner, Y. Zhao, N. Fiotti et al., Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms, J Clin Invest, vol.110, pp.625-632, 2002.

K. M. Newman, J. Jean-claude, H. Li, J. V. Scholes, Y. Ogata et al., Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall, J Vasc Surg, vol.20, pp.814-820, 1994.

K. J. Moore and I. Tabas, Macrophages in the pathogenesis of atherosclerosis, vol.29, pp.341-355, 2011.

C. M. Desrumaux, P. A. Mak, W. A. Boisvert, D. Masson, D. Stupack et al., Phospholipid transfer protein is present in human atherosclerotic lesions and is expressed by macrophages and foam cells, J Lipid Res, vol.44, pp.1453-1461, 2003.

R. Vikstedt, D. Ye, J. Metso, R. B. Hildebrand, T. J. Van-berkel et al., Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development, Arterioscler Thromb Vasc Biol, vol.27, pp.578-586, 2007.

R. Pyo, J. K. Lee, J. M. Shipley, J. A. Curci, D. Mao et al., Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms, J Clin Invest, vol.105, pp.1641-1649, 2000.

A. Daugherty, M. W. Manning, and L. A. Cassis, Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice, J Clin Invest, vol.105, pp.1605-1612, 2000.

A. Daugherty and L. A. Cassis, Mouse models of abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.24, pp.429-434, 2004.

X. C. Jiang, C. Bruce, J. Mar, M. Lin, Y. Ji et al., Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels, J Clin Invest, vol.103, pp.907-914, 1999.

M. Bouly, D. Masson, B. Gross, X. C. Jiang, C. Fievet et al., Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofibrate, J Biol Chem, vol.276, pp.25841-25847, 2001.

A. Y. Tu and J. J. Albers, Functional analysis of the transcriptional activity of the mouse phospholipid transfer protein gene, Biochem Biophys Res Commun, vol.287, pp.921-926, 2001.

J. Lie, I. M. Lankhuize, B. Gross, T. Van-gent, R. Van-haperen et al., A: Fenofibrate reverses the decline in HDL cholesterol in mice overexpressing human phospholipid transfer protein, Biochim Biophys Acta, vol.1738, pp.48-53, 2005.

K. Satoh, P. Nigro, T. Matoba, O. Dell, M. R. Cui et al., Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms, Nat Med, vol.15, pp.649-656, 2009.

O. Liu, L. Jia, X. Liu, Y. Wang, X. Wang et al., Clopidogrel, a platelet P2Y12 receptor inhibitor, reduces vascular inflammation and angiotensin II induced-abdominal aortic aneurysm progression, PLoS One, vol.7, p.51707, 2012.

A. Daugherty, M. W. Manning, and L. A. Cassis, Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis, Br J Pharmacol, vol.134, pp.865-870, 2001.

M. W. Manning, L. A. Cassis, J. Huang, S. J. Szilvassy, and A. Daugherty, Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease, Vasc Med, vol.7, pp.45-54, 2002.

D. Masson, V. Drouineaud, P. Moiroux, T. Gautier, G. Dautin et al., Human seminal plasma displays significant phospholipid transfer activity due to the presence of active phospholipid transfer protein, Mol Hum Reprod, vol.9, pp.457-464, 2003.

S. Anidjar, J. L. Salzmann, D. Gentric, P. Lagneau, J. P. Camilleri et al., Elastase-induced experimental aneurysms in rats. Circulation, vol.82, pp.973-981, 1990.

V. J. Halpern, G. B. Nackman, R. H. Gandhi, E. Irizarry, J. V. Scholes et al., The elastase infusion model of experimental aortic aneurysms: synchrony of induction of endogenous proteinases with matrix destruction and inflammatory cell response, J Vasc Surg, vol.20, pp.51-60, 1994.

J. S. Lindholt and G. P. Shi, Chronic inflammation, immune response, and infection in abdominal aortic aneurysms, Eur J Vasc Endovasc Surg, vol.31, pp.453-463, 2006.

D. Yan, M. Navab, C. Bruce, A. M. Fogelman, and X. C. Jiang, PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity, J Lipid Res, vol.45, pp.1852-1858, 2004.

F. E. Parodi, D. Mao, T. L. Ennis, M. A. Bartoli, and R. W. Thompson, Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB, J Vasc Surg, vol.41, pp.479-489, 2005.

H. A. Uchida, A. Poduri, V. Subramanian, L. A. Cassis, and A. Daugherty, Urokinase-type plasminogen activator deficiency in bone marrowderived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.31, pp.2845-2852, 2011.

C. P. Hans, S. N. Koenig, N. Huang, J. Cheng, S. Beceiro et al., Inhibition of Notch1 signaling reduces abdominal aortic aneurysm in mice by attenuating macrophage-mediated inflammation, Arterioscler Thromb Vasc Biol, vol.32, pp.3012-3023, 2012.

L. N. Zhang, J. Vincelette, Y. Cheng, U. Mehra, D. Chen et al., Inhibition of soluble epoxide hydrolase attenuated atherosclerosis abdominal aortic aneurysm formation, and dyslipidemia, Arterioscler Thromb Vasc Biol, vol.29, pp.1265-1270, 2009.

X. C. Jiang, S. Qin, C. Qiao, K. Kawano, M. Lin et al., Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency

, Nat Med, vol.7, pp.847-852, 2001.

R. Liu, J. Iqbal, C. Yeang, D. Q. Wang, M. M. Hussain et al., Phospholipid transfer protein-deficient mice absorb less cholesterol, Arterioscler Thromb Vasc Biol, vol.27, 2007.

J. P. Habashi, J. J. Doyle, T. M. Holm, H. Aziz, F. Schoenhoff et al., Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism, Science, vol.332, pp.361-365, 2011.

V. Tiyerili, C. F. Mueller, U. M. Becher, T. Czech, M. Van-eickels et al., AT1A(-/-) double knock out mice, Stimulation of the AT2 receptor reduced atherogenesis in ApoE, vol.52, pp.630-637, 2012.

G. Ortiz-muñoz, X. Houard, J. L. Martín-ventura, B. Y. Ishida, S. Loyau et al., HDL antielastase activity prevents smooth muscle cell anoikis, a potential new antiatherogenic property, FASEB J, vol.23, pp.3129-3139, 2009.

M. Rizzo, P. A. Krayenbühl, V. Pernice, A. Frasheri, G. Battista-rini et al., LDL size and subclasses in patients with abdominal aortic aneurysm, Int J Cardiol, vol.134, pp.406-408, 2009.

N. Diehm, F. Dick, T. Schaffner, J. Schmidli, C. Kalka et al., Novel insight into the pathobiology of abdominal aortic aneurysm and potential future treatment concepts, Prog Cardiovasc Dis, vol.50, pp.209-217, 2007.

M. C. Cheung, B. G. Brown, M. Larsen, E. K. Frutkin, A. D. O'brien et al., Phospholipid transfer protein activity is associated with inflammatory markers in patients with cardiovascular disease, Biochim Biophys Acta, vol.1762, pp.131-137, 2006.

A. Schlitt, C. Bickel, P. Thumma, S. Blankenberg, H. J. Rupprecht et al., High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease, Arterioscler Thromb Vasc Biol, vol.23, pp.1857-1862, 2003.

H. Yatsuya, K. Tamakoshi, H. Hattori, R. Otsuka, K. Wada et al., Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases, Circ J, vol.68, pp.11-16, 2004.

W. Schgoer, T. Mueller, M. Jauhiainen, A. Wehinger, R. Gander et al., Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis, Atherosclerosis, vol.196, pp.219-226, 2008.

S. Urbonavicius, G. Urbonaviciene, B. Honoré, E. W. Henneberg, H. Vorum et al., Potential circulating biomarkers for abdominal aortic aneurysm expansion and ruptureea systematic review, Eur J Vasc Endovasc Surg, vol.36, pp.273-280, 2008.