I. Mellon, G. Spivak, and P. C. Hanawalt, Selective removal of transcriptionblocking DNA damage from the transcribed strand of the mammalian DHFR gene, Cell, vol.51, pp.241-249, 1987.

L. Schaeffer, DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor, Science, vol.260, pp.58-63, 1993.

W. J. Feaver, Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair, Cell, vol.75, pp.1379-1387, 1993.

G. Barreto, Gadd45a promotes epigenetic gene activation by repairmediated DNA demethylation, Nature, vol.445, pp.671-675, 2007.

K. M. Schmitz, TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation, Mol. Cell, vol.33, pp.344-353, 2009.

L. May and N. , NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack, Mol. Cell, vol.38, pp.54-66, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02461411

J. E. Cleaver, Splitting hairs-discovery of a new DNA repair and transcription factor for the human disease trichothiodystrophy, DNA Repair (Amst.), vol.4, pp.285-287, 2005.

D. Bootsma, K. H. Kraemer, J. E. Cleaver, and J. H. Hoeijmakers, in The Genetic Basis of Human Cancer 2nd edn, pp.211-237, 2002.

E. Compe and J. M. Egly, Nucleotide excision repair and transcriptional regulation: TFIIH and beyond, Annu. Rev. Biochem, vol.85, pp.265-290, 2016.

K. Sugasawa, Regulation of damage recognition in mammalian global genomic nucleotide excision repair, Mutat. Res, vol.685, pp.29-37, 2010.

R. Guo, J. Chen, D. L. Mitchell, and D. G. Johnson, GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage, Nucleic Acids Res, vol.39, pp.1390-1397, 2011.

A. Takedachi, M. Saijo, and K. Tanaka, DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA, Mol. Cell. Biol, vol.30, pp.2708-2723, 2010.

M. S. Luijsterburg, DDB2 promotes chromatin decondensation at UVinduced DNA damage, J. Cell Biol, vol.197, pp.267-281, 2012.

L. May, N. Fradin, D. Iltis, I. Bougneres, P. Egly et al., XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes, Mol. Cell, vol.47, pp.622-632, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02329959

Y. W. Fong, A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells, Cell, vol.147, pp.120-131, 2011.

C. Cattoglio, Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells, Proc. Natl Acad. Sci. USA, vol.112, pp.2317-2326, 2015.

J. Bernardes-de, B. M. Bjoras, M. Coin, F. Egly, and J. M. , Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC, Mol. Cell. Biol, vol.28, pp.7225-7235, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350734

E. M. Gozukara, A stop codon in xeroderma pigmentosum group C families in Turkey and Italy: molecular genetic evidence for a common ancestor, J. Invest. Dermatol, vol.117, pp.197-204, 2001.

R. Nishi, UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells, DNA Repair (Amst.), vol.8, pp.767-776, 2009.

Z. Nagy and L. Tora, Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation, Oncogene, vol.26, pp.5341-5357, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189146

X. J. Yang, V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani, A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A, Nature, vol.382, pp.319-324, 1996.

L. Wang and S. Y. Dent, Functions of SAGA in development and disease, Epigenomics, vol.6, pp.329-339, 2014.

A. R. Krebs, K. Karmodiya, M. Lindahl-allen, K. Struhl, and L. Tora, SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers, Mol. Cell, vol.44, pp.410-423, 2011.

S. E. Lang, S. B. Mcmahon, M. D. Cole, and P. Hearing, E2F transcriptional activation requires TRRAP and GCN5 cofactors, J. Biol. Chem, vol.276, pp.32627-32634, 2001.

D. Mu and A. Sancar, Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans, J. Biol. Chem, vol.272, pp.7570-7573, 1997.

I. Kamileri, Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria, Proc. Natl Acad. Sci. USA, vol.109, pp.2995-3000, 2012.

G. Chatzinikolaou, ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes, Nat. Cell Biol, vol.19, pp.421-432, 2017.

I. Schreck, The nucleotide excision repair protein XPC is essential for bulky DNA adducts to promote interleukin-6 expression via the activation of p38-SAPK, Oncogene, vol.35, pp.908-918, 2016.

S. Boeing, Multiomic analysis of the UV-induced DNA damage response, Cell Rep, vol.15, pp.1597-1610, 2016.

J. Willemsen, Phosphorylation-dependent feedback inhibition of RIG-I by DAPK1 identified by kinome-wide siRNA screening, Mol. Cell, vol.65, pp.403-415, 2017.

J. L. Kissil, DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene, Oncogene, vol.15, pp.403-407, 1997.

A. T. Sands, A. Abuin, A. Sanchez, C. J. Conti, and A. Bradley, High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC, Nature, vol.377, pp.162-165, 1995.

S. Ito, M. Yamane, S. Ohtsuka, and H. Niwa, The C-terminal region of Xpc is dispensable for the transcriptional activity of Oct3/4 in mouse embryonic stem cells, FEBS Lett, vol.588, pp.1128-1135, 2014.

M. A. Demeny, Identification of a small TAF complex and its role in the assembly of TAF-containing complexes, PLoS ONE, vol.2, p.316, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00190966

A. Singh, E. Compe, N. Le-may, and J. M. Egly, TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription, Am. J. Hum. Genet, vol.96, pp.194-207, 2015.

Z. Nagy, The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes, Cell. Mol. Life Sci, vol.67, pp.611-628, 2010.