P. Matzinger, Tolerance, danger and the extended family, 1994.

D. M. Underhill, A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson et al., The Toll-like receptor 2 is re, Annu. Rev. Immunol, vol.12, pp.991-1045, 1999.

R. Medzhitov, J. , and C. , 811-815. the adaptive immune response, Curr. Opin. Immunol, vol.401, pp.4-9, 1997.

R. M. Vabulas, P. Ahmad-nejad, S. Ghose, C. J. Kirschning, . Issels et al., HSP70 as endogenous stimulus of mechanisms and pathways, J. Biol. Chem, vol.173, pp.15107-15112, 2000.

H. Ochi, E. Nishi, T. Masaki, T. ;. Kita, C. Dezfulian et al., Receptor of LOX-1, a novel endothelial receptor for oxidized low density lipomediated and fluid phase pathways for internalization of the ER protein, Arterioscler. Thromb. Vasc. Biol, vol.18, pp.558-561, 1998.

K. Oka, T. Sawamura, K. I. Kikuta, S. Itokawa, N. Kume et al., Rev. Cell Dev. Biol, vol.15, pp.579-606

T. ;. Masaki, I. Tabas, P. L. Leopold, N. L. Jones, F. R. Maxfield et al., Evidence for prolonged cell-surface contact of acetyl-LDL lial cells, Proc. Natl. Acad. Sci. USA 95, 9535-9540. before entry into macrophages, vol.17, pp.1421-1431, 1997.

M. Rescigno, T. Saito, S. Verbeek, C. Bonnerot, F. Ricciardi-castag-zhou et al., Fcgamma receptor-mediated of thymoma-bearing mice after vaccination with a soluble protein induction of dendritic cell maturation and major histocompatibility antigen entrapped in liposomes: a model study, J. Exp. Med, vol.52, pp.371-380, 1992.

T. Sawamura, N. Kume, T. Aoyama, H. Moriwaki, H. Hoshikawa et al., An endothelial receptor for oxidized low-density lipoprotein, Nature, vol.386, pp.73-77, 1997.

D. H. Schuurhuis, A. Ioan-facsinay, B. Nagelkerken, J. J. Van-schip, C. Sedlik et al., , 2002.

, Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8? CTL responses in vivo, J. Immunol, vol.168, pp.2240-2246

H. Singh-jasuja, R. E. Toes, P. Spee, C. Munz, N. Hilf et al., Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis, J. Exp. Med, vol.191, pp.1965-1974, 2000.

H. Sondermann, T. Becker, M. Mayhew, F. Wieland, and F. U. Hartl, Characterization of a receptor for heat shock protein 70 on macrophages and monocytes, Biol. Chem, vol.381, pp.1165-1174, 2000.

P. Srivastava, Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses, Annu. Rev. Immunol, vol.20, pp.395-425, 2002.

P. K. Srivastava, H. Udono, N. E. Blachere, L. , and Z. , Heat shock proteins transfer peptides during antigen processing and CTL priming, Immunogenetics, vol.39, pp.93-98, 1994.

W. J. Storkus, J. Alexander, J. A. Payne, J. R. Dawson, and P. Cresswell, Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes, Proc. Natl. Acad. Sci. USA, vol.86, pp.2361-2364, 1989.

R. Suto and P. K. Srivastava, A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides, Science, vol.269, pp.1585-1588, 1995.

K. Suzue, X. Zhou, H. N. Eisen, Y. , and R. A. , Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway, Proc. Natl. Acad. Sci. USA, vol.94, pp.13146-13151, 1997.

Y. Tamura, P. Peng, K. Liu, M. Daou, and P. K. Srivastava, Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations, Science, vol.278, pp.117-120, 1997.