J. A. Rose, K. I. Berns, and M. D. Hoggan, Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA, Proc Natl Acad Sci U S A, vol.64, pp.863-872, 1969.

R. W. Atchison, B. C. Casto, and W. M. Hammon, Adenovirus-Associated Defective Virus Particles, Science, vol.149, pp.754-760, 1965.

B. Balakrishnan and G. R. Jayandharan, Basic biology of adeno-associated virus (AAV) vectors used in gene therapy, Curr Gene Ther, vol.14, pp.86-100, 2014.

F. Sonntag, K. Schmidt, and J. A. Kleinschmidt, A viral assembly factor promotes AAV2 capsid formation in the nucleolus, Proc Natl Acad Sci U S A, vol.107, pp.10220-10225, 2010.

C. C. Yang, X. Xiao, and X. Zhu, Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro, J Virol, vol.71, pp.9231-9278, 1997.

H. Nakai, X. Wu, and S. Fuess, Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver, J Virol, vol.79, pp.3606-3620, 2005.

D. Huser, A. Gogol-doring, and W. Chen, Adeno-associated virus type 2 wild-type and vectormediated genomic integration profiles of human diploid fibroblasts analyzed by thirdgeneration PacBio DNA sequencing, J Virol, vol.88, pp.11253-63, 2014.

B. R. Schultz and J. S. Chamberlain, Recombinant adeno-associated virus transduction and integration, Mol Ther, vol.16, pp.1189-99, 2008.

B. C. Schnepp, R. L. Jensen, and C. L. Chen, Characterization of adeno-associated virus genomes isolated from human tissues, J Virol, vol.79, pp.14793-803, 2005.

S. Boutin, V. Monteilhet, and P. Veron, Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors, Hum Gene Ther, vol.21, pp.704-716, 2010.

R. Calcedo, L. H. Vandenberghe, and G. Gao, Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses, J Infect Dis, vol.199, pp.381-90, 2009.

K. Erles, P. Sebokova, and J. R. Schlehofer, Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV), J Med Virol, vol.59, pp.406-417, 1999.

G. P. Gao, M. R. Alvira, and L. Wang, Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc Natl Acad Sci U S A, vol.99, pp.11854-11863, 2002.

G. Gao, L. H. Vandenberghe, and M. R. Alvira, Clades of Adeno-associated viruses are widely disseminated in human tissues, J Virol, vol.78, pp.6381-6389, 2004.

S. Mori, L. Wang, and T. Takeuchi, Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein, Virology, vol.330, pp.375-83, 2004.

M. Schmidt, A. Voutetakis, and S. Afione, Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid-and heparan sulfate proteoglycan-independent transduction activity, J Virol, vol.82, pp.1399-406, 2008.

R. J. Chandler, M. S. Sands, and C. P. Venditti, Recombinant Adeno-Associated Viral Integration and Genotoxicity: Insights from Animal Models, Hum Gene Ther, vol.28, pp.314-322, 2017.

K. I. Berns and N. Muzyczka, AAV: An Overview of Unanswered Questions, Hum Gene Ther, vol.28, pp.308-313, 2017.

A. Donsante, D. G. Miller, and Y. Li, AAV vector integration sites in mouse hepatocellular carcinoma, Science, vol.317, p.477, 2007.

R. J. Chandler, M. C. Lafave, and G. K. Varshney, Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy, J Clin Invest, vol.125, pp.870-80, 2015.

P. R. Wang, M. Xu, and S. Toffanin, Induction of hepatocellular carcinoma by in vivo gene targeting, Proc Natl Acad Sci U S A, vol.109, pp.11264-11273, 2012.

P. L. Hermonat, R. T. Plott, and A. D. Santin, Adeno-associated virus Rep78 inhibits oncogenic transformation of primary human keratinocytes by a human papillomavirus type 16-ras chimeric, Gynecol Oncol, vol.66, pp.487-94, 1997.

, The level of expression was assayed using qPCR in HCC with AAV insertions, within the tested gene and other target genes, in comparison to HCC without AAV insertion and non-tumor liver (NTL) tissues. Gene expression is presented relative to the expression in normal liver tissue on the y axis (log10). The black line in each boxplot corresponds to the mean values, Non-tumor tissues (N=233/1319of clonal AAV integration on the expression of the target oncogenes: GLI1 (A), TERT (B), CCNA2 (C), CCNE1 (D)

C. L. Chen, R. L. Jensen, and B. C. Schnepp, Molecular characterization of adeno-associated viruses infecting children, J Virol, vol.79, pp.14781-92, 2005.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-431, 1987.

M. A. Larkin, G. Blackshields, and N. P. Brown, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2955, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

K. Tamura and M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol Biol Evol, vol.10, pp.512-538, 1993.