J. H. Hoeijmakers, DNA damage, aging, and cancer, N. Engl. J. Med, vol.361, pp.1475-1485, 2009.

K. Diderich, M. Alanazi, and J. H. Hoeijmakers, Premature aging and cancer in nucleotide excision repair-disorders, DNA Repair (Amst), vol.10, pp.772-780, 2011.

O. D. Schärer, Nucleotide excision repair in eukaryotes, Cold Spring Harb. Perspect. Biol, vol.5, p.12609, 2013.

S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet et al., Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.13765-13770, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01966814

S. Mouret, P. Bogdanowicz, M. Haure, N. Castex-rizzi, J. Cadet et al., Assessment of the photoprotection properties of sunscreens by chromatographic measurement of DNA damage in skin explants, Photochem. Photobiol, vol.87, pp.109-116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02054599

J. Cadet and T. Douki, Formation of UV-induced DNA damage contributing to skin cancer development, Photochem. Photobiol. Sci, vol.17, pp.1816-1841, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01869675

R. K. Mcginty and S. Tan, Nucleosome structure and function, Chem. Rev, vol.115, pp.2255-2273, 2015.

K. Zhou, G. Gaullier, and K. Luger, Nucleosome structure and dynamics are coming of age, Nat. Struct. Mol. Biol, vol.26, pp.3-13, 2019.

G. A. Armeev, A. K. Gribkova, I. Pospelova, G. A. Komarova, and A. K. Shaytan, Linking chromatin composition and structural dynamics at the nucleosome level, Curr. Opin. Struct. Biol, vol.56, pp.46-55, 2019.

P. Mao, A. J. Brown, S. Esaki, S. Lockwood, G. M. Poon et al., ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma, Nat. Commun, vol.9, p.2626, 2018.

A. J. Brown, P. Mao, M. J. Smerdon, J. J. Wyrick, and S. A. Roberts, Nucleosome positions establish an extended mutation signature in melanoma, PLoS Genet, vol.14, p.1007823, 2018.

S. Adar, J. Hu, J. D. Lieb, and A. Sancar, Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.2124-2133, 2016.

W. Li, J. Hu, O. Adebali, S. Adar, Y. Yang et al., Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6752-6757, 2017.

J. Hu, O. Adebali, S. Adar, and A. Sancar, Dynamic maps of UV damage formation and repair for the human genome, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6758-6763, 2017.

M. J. Smerdon and A. Conconi, Modulation of DNA damage and DNA repair in chromatin, Prog. Nucleic Acid Res. Mol. Biol, vol.62, pp.227-255, 1998.

P. Mao, M. J. Smerdon, S. A. Roberts, and J. J. Wyrick, Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.9057-9062, 2016.

Z. Wang, X. Wu, and E. C. Friedberg, Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes, J. Biol. Chem, vol.266, pp.22472-22478, 1991.

R. Hara, J. Mo, and A. Sancar, DNA damage in the nucleosome core is refractory to repair by human excision nuclease, Mol. Cell. Biol, vol.20, pp.9173-9181, 2000.

K. Ura, M. Araki, H. Saeki, C. Masutani, T. Ito et al., ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes, EMBO J, vol.20, pp.2004-2014, 2001.

X. Liu and M. J. Smerdon, Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome, J. Biol. Chem, vol.275, pp.23729-23735, 2000.

R. Nag and M. J. Smerdon, Altering the chromatin landscape for nucleotide excision repair, Mutat. Res. Mutat. Res, vol.682, pp.13-20, 2009.

S. Adam, J. Dabin, O. Chevallier, O. Leroy, C. Baldeyron et al., Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage, Mol. Cell, vol.64, pp.65-78, 2016.

D. Mu, C. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon et al., Reconstitution of human DNA repair excision nuclease in a highly defined system, J. Biol. Chem, vol.270, pp.2415-2418, 1995.

A. Aboussekhra, M. Biggerstaff, M. K. Shivji, J. A. Vilpo, V. Moncollin et al., Mammalian DNA nucleotide excision repair reconstituted with purified protein components, Cell, vol.80, pp.859-868, 1995.

J. A. Marteijn, H. Lans, W. Vermeulen, and J. H. Hoeijmakers, Understanding nucleotide excision repair and its roles in cancer and ageing, Nat. Rev. Mol. Cell Biol, vol.15, pp.465-481, 2014.

W. Czaja, P. Mao, M. J. Smerdon, W. Czaja, P. Mao et al., The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair, Int. J. Mol. Sci, vol.13, pp.11954-11973, 2012.

Z. Palomera-sanchez and M. Zurita, Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage, DNA Repair (Amst), vol.10, pp.119-125, 2011.

S. E. Polo and G. Almouzni, Chromatin dynamics after DNA damage: the legacy of the access-repair-restore model, DNA Repair (Amst), vol.36, pp.114-121, 2015.

D. J. Telford and B. W. Stewart, Characteristics of chromatin release during digestion of nuclei with micrococcal nuclease: preferential solubilization of nascent RNA at low enzyme concentration, Int. J. Biochem, vol.21, pp.1235-1240, 1989.

M. J. Smerdon and M. W. Lieberman, Nucleosome rearrangement in human chromatin during UV-induced DNA-repair synthesis, Proc. Natl. Acad. Sci. U.S.A, vol.75, pp.4238-4141, 1978.

A. G. Zavala, R. T. Morris, J. J. Wyrick, and M. J. Smerdon, High-resolution characterization of CPD hotspot formation in human fibroblasts, Nucleic Acids Res, vol.42, pp.893-905, 2014.

S. Matsumoto, S. Cavadini, R. D. Bunker, R. S. Grand, A. Potenza et al., DNA damage detection in nucleosomes involves DNA register shifting, Nature, vol.571, pp.79-84, 2019.

P. L. Gaillard, E. M. Martini, .. Kaufman, P. D. Stillman, B. Moustacchi et al., Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I, Cell, vol.86, pp.887-896, 1996.

P. L. Gaillard, J. G. Moggs, D. M. Roche, J. Quivy, P. B. Becker et al., Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair, EMBO J, vol.16, pp.6281-6289, 1997.

E. Martini, D. M. Roche, K. Marheineke, A. Verreault, and G. Almouzni, Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells, J. Cell Biol, vol.143, pp.563-575, 1998.

J. G. Moggs, P. Grandi, J. Quivy, Z. O. Jonsson, U. Hübscher et al., A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage, Mol. Cell. Biol, vol.20, pp.1206-1218, 2000.

C. M. Green and G. Almouzni, Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo, 2003.

, EMBO J, vol.22, pp.5163-5174

J. A. Mello, H. H. Silljé, D. M. Roche, D. B. Kirschner, E. A. Nigg et al., Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway, EMBO Rep, vol.3, pp.329-334, 2002.

A. Groth, W. Rocha, A. Verreault, G. Ve-almouzni, and G. Almouzni, Chromatin challenges during DNA replication and repair, Cell, vol.128, pp.721-733, 2007.

S. E. Polo, D. Roche, and G. Almouzni, New histone incorporation marks sites of UV repair in human cells, Cell, vol.127, pp.481-493, 2006.

C. Dinant, G. Ampatziadis-michailidis, H. Lans, M. Tresini, A. Lagarou et al., Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage, Mol. Cell, vol.51, pp.469-479, 2013.

S. Piquet, F. Le-parc, S. Bai, O. Chevallier, S. Adam et al., The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage, Mol. Cell, vol.72, pp.888-901, 2018.

J. M. Gale, K. A. Nissen, and M. J. Smerdon, UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases, Proc. Natl. Acad. Sci. U.S.A, vol.84, pp.6644-6648, 1987.

D. W. Brown, L. J. Libertini, C. Suquet, E. W. Small, and M. J. Smerdon, Unfolding of nucleosome cores dramatically changes the distribution of ultraviolet photoproducts in DNA, Biochemistry, vol.32, pp.10527-10531, 1993.

M. S. Luijsterburg, C. Dinant, H. Lans, J. Stap, E. Wiernasz et al., Heterochromatin protein 1 is recruited to various types of DNA damage, J. Cell Biol, vol.185, pp.577-586, 2009.

T. Cheutin, A. J. Mcnairn, T. Jenuwein, D. M. Gilbert, P. B. Singh et al., Maintenance of stable heterochromatin domains by dynamic HP1 binding, Science, vol.299, pp.721-725, 2003.

S. Adam, S. E. Polo, and G. Almouzni, Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA, Cell, vol.155, pp.94-106, 2013.

X. Yang, L. Li, J. Liang, L. Shi, J. Yang et al., Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover, J. Biol. Chem, vol.288, pp.18271-18282, 2013.

E. Kakumu, S. Nakanishi, H. M. Shiratori, A. Kato, W. Kobayashi et al., Xeroderma pigmentosum group C protein interacts with histones: Regulation by acetylated states of histone H3, Genes Cells, vol.22, pp.310-327, 2017.

C. E. Barnes, D. M. English, and S. M. Cowley, Acetylation & CO: an expanding repertoire of histone acylations regulates chromatin and transcription, Essays Biochem, vol.63, pp.97-107, 2019.

Z. Li, H. Mon, H. Mitsunobu, L. Zhu, J. Xu et al., Dynamics of polycomb proteins-mediated histone modifications during UV irradiation-induced DNA damage, Insect Biochem. Mol. Biol, vol.55, pp.9-18, 2014.

D. M. Chou, B. Adamson, N. E. Dephoure, X. Tan, A. C. Nottke et al., A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.18475-18480, 2010.

A. Ui, Y. Nagaura, and A. Yasui, Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair, Mol. Cell, vol.58, pp.468-482, 2015.

D. B. Mann, D. L. Springer, and M. J. Smerdon, DNA damage can alter the stability of nucleosomes: Effects are dependent on damage type, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.2215-2220, 1997.

M. Duan and M. J. Smerdon, UV damage in DNA promotes nucleosome unwrapping, J. Biol. Chem, vol.285, pp.26295-26303, 2010.

J. Huang, D. L. Svoboda, J. T. Reardon, and A. Sancar, Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5 and the 6th phosphodiester bond 3 to the photodimer, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.3664-3668, 1992.

J. G. Moggs, K. J. Yarema, J. M. Essigmann, and R. D. Wood, Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct, J. Biol. Chem, vol.271, pp.7177-7186, 1996.

G. Spivak, Transcription-coupled repair: an update, Arch. Toxicol, vol.90, pp.2583-2594, 2016.

J. R. Portman and T. R. Strick, Transcription-coupled repair and complex biology, J. Mol. Biol, vol.430, pp.4496-4512, 2018.

L. H. Gregersen and J. Q. Svejstrup, The cellular response to transcription-blocking DNA damage, Trends Biochem. Sci, vol.43, pp.327-341, 2018.

H. Mu, N. E. Geacintov, S. Broyde, J. Yeo, and O. D. Schärer, Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair, DNA Repair (Amst), vol.71, pp.33-42, 2018.

J. J. Digiovanna and K. H. Kraemer, Shining a light on xeroderma pigmentosum, J. Invest. Dermatol, vol.132, pp.785-796, 2012.

J. Lehmann, C. Seebode, M. C. Martens, and S. Emmert, Xeroderma pigmentosum -facts and perspectives, Anticancer Res, vol.38, pp.1159-1164, 2018.

C. Nishigori, E. Nakano, T. Masaki, R. Ono, S. Takeuchi et al., Characteristics of xeroderma pigmentosum in Japan: lessons from two clinical surveys and measures for patient care, Photochem. Photobiol, vol.95, pp.140-153, 2019.

K. Sugasawa, J. M. Ng, C. Masutani, S. Iwai, P. J. Van-der-spek et al., Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol. Cell, vol.2, pp.223-232, 1998.

M. Volker, M. J. Moné, P. Karmakar, A. Van-hoffen, W. Schul et al., Sequential assembly of the nucleotide excision repair factors in vivo, Mol. Cell, vol.8, pp.213-224, 2001.

J. M. Ng, W. Vermeulen, G. T. Van-der-horst, S. Bergink, K. Sugasawa et al., A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein, Genes Dev, vol.17, pp.1630-1645, 2003.

R. Nishi, Y. Okuda, E. Watanabe, T. Mori, S. Iwai et al., Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein, Mol. Cell Biol, vol.25, pp.5664-5674, 2005.

T. Buterin, C. Meyer, B. Giese, and H. Naegeli, DNA quality control by conformational readout on the undamaged strand of the double helix, Chem. Biol, vol.12, pp.913-922, 2005.

O. Maillard, S. Solyom, and H. Naegeli, An aromatic sensor with aversion to damaged strands confers versatility to DNA repair, PLoS Biol, vol.5, p.79, 2007.

J. Min and N. P. Pavletich, Recognition of DNA damage by the Rad4 nucleotide excision repair protein, Nature, vol.449, pp.570-575, 2007.

H. Mu, N. E. Geacintov, J. Min, Y. Zhang, and S. Broyde, Nucleotide excision repair lesion-recognition protein Rad4 captures a pre-flipped partner base in a benzo[a]pyrene-derived DNA lesion: how structure impacts the binding pathway, Chem. Res. Toxicol, vol.30, pp.1344-1354, 2017.

S. J. Araújo, F. Tirode, F. Coin, H. Pospiech, J. E. Syväoja et al., Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK, Genes Dev, vol.14, pp.349-359, 2000.

P. J. Van-der-spek, A. Eker, S. Rademakers, C. Visser, K. Sugasawa et al., XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes, Nucleic Acids Res, vol.24, pp.2551-2559, 1996.

U. Camenisch, D. Träutlein, F. C. Clement, J. Fei, A. Leitenstorfer et al., Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein, EMBO J, vol.28, pp.2387-2399, 2009.

N. Y. Cheon, H. Kim, J. Yeo, O. D. Schärer, and J. Y. Lee, Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B, Nucleic Acids Res, vol.47, pp.8337-8347, 2019.

K. Sugasawa, J. Akagi, R. Nishi, S. Iwai, and F. Hanaoka, Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning, Mol. Cell, vol.36, pp.642-653, 2009.

T. J. Dantas, Y. Wang, P. Lalor, P. Dockery, and C. G. Morrison, Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins, J. Cell Biol, vol.193, pp.307-318, 2011.

S. Bergink, W. Toussaint, M. S. Luijsterburg, C. Dinant, S. Alekseev et al., Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex, J. Cell Biol, vol.196, pp.681-688, 2012.

M. Yokoi, C. Masutani, T. Maekawa, K. Sugasawa, Y. Ohkuma et al., The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA, J. Biol. Chem, vol.275, pp.9870-9875, 2000.

J. Bernardes-de, B. M. Bjørås, M. Coin, F. Egly, and J. M. , Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC, Mol. Cell Biol, vol.28, pp.7225-7235, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350734

V. Oksenych, B. B. De-jesus, A. Zhovmer, J. Egly, and F. Coin, Molecular insights into the recruitment of TFIIH to sites of DNA damage, EMBO J, vol.28, pp.2971-2980, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00438661

N. Mathieu, N. Kaczmarek, and H. Naegeli, Strand-and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.17545-17550, 2010.

N. Mathieu, N. Kaczmarek, P. Rüthemann, A. Luch, and H. Naegeli, DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH, Curr. Biol, vol.23, pp.204-212, 2013.

F. Coin, V. Oksenych, V. Mocquet, S. Groh, C. Blattner et al., Nucleotide excision repair driven by the dissociation of CAK from TFIIH, Mol. Cell, vol.31, pp.9-20, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00311093

G. Kokic, A. Chernev, D. Tegunov, C. Dienemann, H. Urlaub et al., Structural basis of TFIIH activation for nucleotide excision repair, Nat. Commun, vol.10, p.2885, 2019.

E. Evans, J. Fellows, A. Coffer, and R. D. Wood, Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein, EMBO J, vol.16, pp.625-638, 1997.

M. Wakasugi and A. Sancar, Assembly, subunit composition, and footprint of human DNA repair excision nuclease, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.6669-6674, 1998.

M. Missura, T. Buterin, R. Hindges, U. Hübscher, J. Kaspárková et al., Double-check probing of DNA bending and unwinding by XPA-RPA: An architectural function in DNA repair, EMBO J, vol.20, pp.3554-3564, 2001.

C. Li, F. M. Golebiowski, Y. Onishi, N. L. Samara, K. Sugasawa et al., Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair, 2015.

, Mol. Cell, vol.59, pp.1025-1034

L. Staresincic, A. F. Fagbemi, J. H. Enzlin, A. M. Gourdin, N. Wijgers et al., Coordination of dual incision and repair synthesis in human nucleotide excision repair, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148367

, EMBO J, vol.28, pp.1111-1120

T. Ogi, S. Limsirichaikul, R. M. Overmeer, M. Volker, K. Takenaka et al.,

, Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells, Mol. Cell, vol.37, pp.714-727

J. Moser, H. Kool, I. Giakzidis, K. Caldecott, L. H. Mullenders et al., Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III? in a cell-cycle-specific manner, Mol. Cell, vol.27, pp.311-323, 2007.

J. Kim and B. Choi, The solution structure of DNA duplex-decamer containing the (6-4) photoproduct of thymidylyl(3 5 )thymidine by NMR and relaxation matrix refinement, Eur. J. Biochem, vol.228, pp.849-854, 1995.

Y. Jing, J. Taylor, J. F. Kao, and .. , Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis-syn, Nucleic Acids Res, vol.26, issue.6, pp.3845-3853, 1998.

K. Mcateer, Y. Jing, J. Kao, J. Taylor, and M. A. Kennedy, Solution-state structure of a DNA dodecamer duplex containing a Cis-Syn thymine cyclobutane dimer, the major UV photoproduct of DNA, J. Mol. Biol, vol.282, pp.1013-1032, 1998.

M. E. Fitch, S. Nakajima, A. Yasui, and J. M. Ford, In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product, J. Biol. Chem, vol.278, pp.46906-46910, 2003.

D. Paul, H. Mu, H. Zhao, O. Ouerfelli, P. D. Jeffrey et al., Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex, Nucleic Acids Res, vol.47, pp.6015-6028, 2019.

J. M. Gale and M. J. Smerdon, UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes, Photochem. Photobiol, vol.51, pp.411-417, 1990.

D. L. Mitchell, T. D. Nguyen, and J. E. Cleaver, Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin, J. Biol. Chem, vol.265, pp.5353-5356, 1990.

W. Schul, J. Jans, Y. M. Rijksen, K. H. Klemann, A. P. Eker et al., Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice, EMBO J, vol.21, pp.4719-4729, 2002.

G. A. Garinis, J. R. Mitchell, M. J. Moorhouse, K. Hanada, H. De-waard et al., Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks, 2005.

, EMBO J, vol.24, pp.3952-3962

H. Ikehata and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res, vol.52, pp.115-125, 2011.

A. Scrima, R. Koní?ková, B. K. Czyzewski, Y. Kawasaki, P. D. Jeffrey et al., Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex, Cell, vol.135, pp.1213-1223, 2008.

E. S. Fischer, A. Scrima, K. Böhm, S. Matsumoto, G. M. Lingaraju et al., The molecular basis of CRL4(DDB2/CSA) ubiquitin ligase architecture, targeting, and activation, Cell, vol.147, pp.1024-1039, 2011.

K. Sugasawa, Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair, DNA Repair (Amst), vol.44, pp.110-117, 2016.

Q. Zhu and A. A. Wani, Nucleotide excision repair: finely tuned molecular orchestra of early pre-incision events, Photochem. Photobiol, vol.93, pp.166-177, 2017.

K. Sugasawa, Y. Okuda, M. Saijo, R. Nishi, N. Matsuda et al., UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex, Cell, vol.121, pp.387-400, 2005.

M. G. Kapetanaki, J. Guerrero-santoro, D. C. Bisi, C. L. Hsieh, V. Rapi?-otrin et al., The DDB1-CUL4A(DDB2) ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites, Proc. Natl. Acad. Sci, vol.103, pp.2588-2593, 2006.

H. Wang, L. Zhai, J. Xu, H. Joo, S. Jackson et al., , 2006.

, Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage, Mol. Cell, vol.22, pp.383-394

M. Puumalainen, D. Lessel, P. Rüthemann, N. Kaczmarek, K. Bachmann et al., Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat. Commun, vol.5, p.3695, 2014.

J. He, Q. Zhu, G. Wani, N. Sharma, C. Han et al., Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis, J. Biol. Chem, vol.289, pp.27278-27289, 2014.

M. A. El-mahdy, Q. Zhu, Q. Wang, G. Wani, M. Praetorius-ibba et al., Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC, J. Biol. Chem, vol.281, pp.13404-13411, 2006.

X. Chen, Y. Zhang, L. Douglas, and P. Zhou, UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation, J. Biol. Chem, vol.276, pp.48175-48182, 2001.

V. Rapic-otrin, M. P. Mclenigan, D. C. Bisi, M. Gonzalez, and A. S. Levine, Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation, Nucleic Acids Res, vol.30, pp.2588-2598, 2002.

S. L. Poulsen, R. K. Hansen, S. A. Wagner, L. Van-cuijk, G. J. Van-belle et al., RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response, J. Cell Biol, vol.201, pp.797-807, 2013.

L. Van-cuijk, G. J. Van-belle, Y. Turkyilmaz, S. L. Poulsen, R. C. Janssens et al., SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair, Nat. Commun, vol.6, p.7499, 2015.

M. Akita, Y. Tak, T. Shimura, S. Matsumoto, Y. Okuda-shimizu et al., SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair, Sci. Rep, vol.5, p.10984, 2015.

L. Lan, S. Nakajima, M. G. Kapetanaki, C. L. Hsieh, M. Fagerburg et al., Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase, J. Biol. Chem, vol.287, pp.12036-12049, 2012.

M. S. Luijsterburg, M. Lindh, K. Acs, M. G. Vrouwe, A. Pines et al., DDB2 promotes chromatin decondensation at UV-induced DNA damage, J. Cell Biol, vol.197, pp.267-281, 2012.

M. Robu, R. G. Shah, N. K. Purohit, P. Zhou, H. Naegeli et al., Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6847-6856, 2017.

M. Brand, J. G. Moggs, M. Oulad-abdelghani, F. Lejeune, F. J. Dilworth et al., UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation, EMBO J, vol.20, pp.3187-3196, 2001.

A. Datta, S. Bagchi, A. Nag, P. Shiyanov, G. R. Adami et al., The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase, Mutat. Res. Repair, vol.486, pp.89-97, 2001.

O. Cazzalini, P. Perucca, M. Savio, D. Necchi, L. Bianchi et al., Interaction of p21 CDKN1A with PCNA regulates the histone acetyltransferase activity of p300 in nucleotide excision repair, Nucleic Acids Res, vol.36, pp.1713-1722, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00317516

R. Guo, J. Chen, D. L. Mitchell, and D. G. Johnson, GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage, Nucleic Acids Res, vol.39, pp.1390-1397, 2011.

N. Horikoshi, H. Tachiwana, W. Kagawa, A. Osakabe, S. Matsumoto et al., Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer, Biochem. Biophys. Res. Commun, vol.471, pp.117-122, 2016.

Y. Cai, I. Fu, N. E. Geacintov, Y. Zhang, and S. Broyde, Synergistic effects of H3 and H4 nucleosome tails on structure and dynamics of a lesion-containing DNA: Binding of a displaced lesion partner base to the H3 tail for GG-NER recognition, DNA Repair (Amst), vol.65, pp.73-78, 2018.

V. R. Otrin, M. Mclenigan, M. Takao, A. S. Levine, and M. Protic, Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light, J. Cell Sci, vol.110, pp.1159-1168, 1997.

R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo et al., The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage, Cell, vol.113, pp.357-367, 2003.

T. Yasuda, K. Sugasawa, Y. Shimizu, S. Iwai, T. Shiomi et al., Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex, DNA Repair (Amst), vol.4, pp.389-395, 2005.

D. Hoogstraten, S. Bergink, J. M. Ng, V. H. Verbiest, M. S. Luijsterburg et al., Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC, J. Cell Sci, vol.121, pp.2850-2859, 2008.

L. Solimando, M. S. Luijsterburg, L. Vecchio, W. Vermeulen, R. Van-driel et al., Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus, J. Cell Sci, vol.122, pp.83-91, 2009.

J. Fei, N. Kaczmarek, A. Luch, A. Glas, T. Carell et al., Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA, PLoS Biol, vol.9, p.1001183, 2011.

C. Balbo-pogliano, M. Gatti, P. Rüthemann, Z. Garajovà, L. Penengo et al., ASH1L histone methyltransferase regulates the handoff between damage recognition factors in global-genome nucleotide excision repair, Nat. Commun, vol.8, p.1333, 2017.

F. Gong, D. Fahy, and M. J. Smerdon, Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair, Nat. Struct. Mol. Biol, vol.13, pp.902-907, 2006.

A. Ray, S. N. Mir, G. Wani, Q. Zhao, A. Battu et al., Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation, Mol. Cell Biol, vol.29, pp.6206-6219, 2009.

C. L. Peterson and G. Almouzni, Nucleosome dynamics as modular systems that integrate DNA damage and repair, Cold Spring Harb. Perspect. Biol, vol.5, p.12658, 2013.

A. Pines, M. G. Vrouwe, J. A. Marteijn, D. Typas, M. S. Luijsterburg et al., promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1, J. Cell Biol, vol.199, pp.235-249, 2012.

Y. Jiang, X. Wang, S. Bao, R. Guo, D. G. Johnson et al., INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.17274-17279, 2010.

P. Rüthemann, C. Balbo-pogliano, T. Codilupi, Z. Garajovà, and H. Naegeli, Chromatin remodeler CHD1 promotes XPC-to-TFIIH handover of nucleosomal UV lesions in nucleotide excision repair, EMBO J, vol.37, p.201695742, 2017.

P. J. Skene, A. E. Hernandez, M. Groudine, and S. Henikoff, The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1, Elife, vol.3, p.2042, 2014.

Q. Zhao, Q. Wang, A. Ray, G. Wani, C. Han et al., Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex, J. Biol. Chem, vol.284, pp.30424-30432, 2009.

L. Zhang, Q. Zhang, K. Jones, M. Patel, and F. Gong, The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage, Cell Cycle, vol.8, pp.3953-3959, 2009.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.

E. I. Campos and D. Reinberg, Histones: annotating chromatin, Annu. Rev. Genet, vol.43, pp.559-599, 2009.

E. J. Wagner and P. B. Carpenter, Understanding the language of Lys36 methylation at histone H3, Nat. Rev. Mol. Cell Biol, vol.13, pp.115-126, 2012.

R. A. Varier and H. T. Timmers, Histone lysine methylation and demethylation pathways in cancer, Biochim. Biophys. Acta -Rev. Cancer, vol.1815, pp.75-89, 2011.

E. L. Greer and Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet, vol.13, pp.343-357, 2012.

G. E. Zentner and S. Henikoff, Regulation of nucleosome dynamics by histone modifications, Nat. Struct. Mol. Biol, vol.20, pp.259-266, 2013.

J. C. Black, C. Van-rechem, and J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol. Cell, vol.48, pp.491-507, 2012.

Z. Palomera-sanchez, A. Bucio-mendez, V. Valadez-graham, E. Reynaud, and M. Zurita, Drosophila p53 is required to increase the levels of the dKDM4B demethylase after UV-induced DNA damage to demethylate histone H3 lysine 9, J. Biol. Chem, vol.285, pp.31370-31379, 2010.

G. Castelli, E. Pelosi, and U. Testa, Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy, Onco. Targets. Ther, vol.11, pp.131-155, 2018.

S. M. Carlson and O. Gozani, Nonhistone lysine methylation in the regulation of cancer pathways, Cold Spring Harb. Perspect. Med, vol.6, p.26435, 2016.

H. Alam, B. Gu, and M. G. Lee, Histone methylation modifiers in cellular signaling pathways, Cell Mol. Life Sci, vol.72, pp.4577-4592, 2015.

S. Kudithipudi and A. Jeltsch, Approaches and guidelines for the identification of novel substrates of protein lysine methyltransferases, Cell Chem. Biol, vol.23, pp.1049-1055, 2016.

A. T. Nguyen and Y. Zhang, The diverse functions of Dot1 and H3K79 methylation, Genes Dev, vol.25, pp.1345-1358, 2011.

H. Vlaming and F. Van-leeuwen, The upstreams and downstreams of H3K79 methylation by DOT1L, Chromosoma, vol.125, pp.593-605, 2016.

J. C. Game, M. S. Williamson, T. Spicakova, and J. M. Brown, The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18, Genetics, vol.173, pp.1951-1968, 2006.

S. Nakanishi, J. S. Lee, K. E. Gardner, J. M. Gardner, Y. Takahashi et al., Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1, J. Cell Biol, vol.186, pp.371-377, 2009.

H. H. Ng, R. Xu, Y. Zhang, and K. Struhl, Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79, J. Biol. Chem, vol.277, pp.34655-34657, 2002.

R. K. Mcginty, J. Kim, C. Chatterjee, R. G. Roeder, and T. W. Muir, Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation, Nature, vol.453, pp.812-816, 2008.

Y. Huyen, O. Zgheib, R. A. Ditullio, . Jr, V. G. Gorgoulis et al., Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks, Nature, vol.432, pp.406-411, 2004.

M. S. Singer, A. Kahana, A. J. Wolf, L. L. Meisinger, S. E. Peterson et al., Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae, Genetics, vol.150, pp.613-632, 1998.

Z. Wang, C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nat. Genet, vol.40, pp.897-903, 2008.

D. J. Steger, M. I. Lefterova, L. Ying, A. J. Stonestrom, M. Schupp et al., , 2008.

, DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells, Mol. Cell. Biol, vol.28, pp.2825-2839

I. Jonkers, H. Kwak, and J. T. Lis, Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons, Elife, vol.3, p.2407, 2014.

A. Veloso, K. S. Kirkconnell, B. Magnuson, B. Biewen, M. T. Paulsen et al., Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications, Genome Res, vol.24, pp.896-905, 2014.

K. Wood, M. Tellier, S. Murphy, K. Wood, M. Tellier et al., DOT1L and H3K79 methylation in transcription and genomic stability, Biomolecules, vol.8, p.11, 2018.

L. Godfrey, N. T. Crump, R. Thorne, I. Lau, E. Repapi et al., DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation, Nat. Commun, vol.10, p.2803, 2019.

R. Wysocki, A. Javaheri, S. Allard, F. Sha, J. Côté et al., Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9, Mol. Cell Biol, vol.25, pp.8430-8443, 2005.

M. Giannattasio, F. Lazzaro, P. Plevani, and M. Muzi-falconi, The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1, J. Biol. Chem, vol.280, pp.9879-9886, 2005.

L. J. Bostelman, A. M. Keller, A. M. Albrecht, A. Arat, and J. S. Thompson, Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae, DNA Repair (Amst), vol.6, pp.383-395, 2007.

S. Chaudhuri, J. J. Wyrick, and M. J. Smerdon, Histone H3 Lys79 methylation is required for efficient nucleotide excision repair in a silenced locus of Saccharomyces cerevisiae, Nucleic Acids Res, vol.37, pp.1690-1700, 2009.

A. Müller-taubenberger, C. Bönisch, M. Fürbringer, F. Wittek, and S. B. Hake, The histone methyltransferase Dot1 is required for DNA damage repair and proper development in Dictyostelium, Biochem. Biophys. Res. Commun, vol.404, pp.1016-1022, 2011.

D. Tatum and S. Li, Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79, J. Biol. Chem, vol.286, pp.17530-17535, 2011.

B. Jones, H. Su, A. Bhat, H. Lei, J. Bajko et al., The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure, PLoS Genet, vol.4, p.1000190, 2008.

Y. Feng, Y. Yang, M. M. Ortega, J. N. Copeland, M. Zhang et al., Early mammalian erythropoiesis requires the Dot1L methyltransferase, Blood, vol.116, pp.4483-4491, 2010.

S. Y. Jo, E. M. Granowicz, I. Maillard, D. Thomas, and J. L. Hess, Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation, Blood, vol.117, pp.4759-4768, 2011.

B. Zhu, S. Chen, H. Wang, C. Yin, C. Han et al., The protective role of DOT1L in UV-induced melanomagenesis, Nat. Commun, vol.9, p.259, 2018.

V. Oksenych, A. Zhovmer, S. Ziani, P. Mari, J. Eberova et al., Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack, PLoS Genet, vol.9, p.1003611, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02148321

B. M. Sutherland, H. Hacham, P. Bennett, J. C. Sutherland, M. Moran et al., Repair of cyclobutyl pyrimidine dimers in human skin: Variability among normal humans in nucleotide excision and in photorepair, Photodermatol. Photoimmunol. Photomed, vol.18, pp.109-116, 2002.

B. J. Hwang, J. M. Ford, P. C. Hanawalt, and G. Chu, Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.424-428, 1999.

C. Huang and B. Zhu, Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity, Biophys. Reports, vol.4, pp.170-177, 2018.

A. Shearn, The ash-1, ash-2 and trithorax genes of Drosophila melanogaster are functionally related, Genetics, vol.121, pp.517-525, 1989.

N. A. Tripoulas, E. Hersperger, D. La-jeunesse, and A. Shearn, Molecular genetic analysis of the Drosophila melanogaster gene absent, small or homeotic discs1 (ash1), Genetics, vol.137, pp.1027-1038, 1994.

K. M. Dorighi and J. W. Tamkun, The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila, Dev, vol.140, pp.4182-4192, 2013.

T. Klymenko and J. Müller, The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins, EMBO Rep, vol.5, pp.373-377, 2004.

S. An, K. Joo-yeo, Y. Ho-jeon, and J. Song, Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism, J. Biol. Chem, vol.286, pp.8369-8374, 2011.

P. Hou, C. Huang, C. Liu, N. Yang, T. Yu et al., Structural insights into stimulation of Ash1L's H3K36 methyltransferase activity through Mrg15 binding, Structure, vol.27, pp.837-845, 2019.

Y. Lee, E. Yoon, S. Cho, S. Schmähling, J. Müller et al., Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop, Structure, vol.27, pp.846-852, 2019.

Y. Tanaka, Z. Katagiri, K. Kawahashi, D. Kioussis, and S. Kitajima, Trithorax-group protein ASH1 methylates histone H3 lysine 36, Gene, vol.397, pp.161-168, 2007.

G. Yuan, B. Ma, W. Yuan, Z. Zhang, P. Chen et al., Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases, J. Biol. Chem, vol.288, pp.30832-30842, 2013.

H. Miyazaki, K. Higashimoto, Y. Yada, T. A. Endo, J. Sharif et al., Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract Polycomb silencing, PLoS Genet, vol.9, p.1003897, 2013.

M. S. Eram, E. Kuznetsova, F. Li, E. Lima-fernandes, S. Kennedy et al., Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2, Biochim. Biophys. Acta -Gen. Subj, vol.1850, pp.1842-1848, 2015.

G. D. Gregory, C. R. Vakoc, T. Rozovskaia, X. Zheng, S. Patel et al., Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes, Mol. Cell Biol, vol.27, pp.8466-8479, 2007.

B. Yin, F. Yu, C. Wang, B. Li, M. Liu et al., Epigenetic control of mesenchymal stem cell fate decision via histone methyltransferase Ash1l, Stem Cells, vol.37, pp.115-127, 2019.

T. Zhu, C. Liang, D. Li, M. Tian, S. Liu et al., Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1?, Sci. Rep, vol.6, p.26597, 2016.

W. Shen, P. Krautscheid, A. M. Rutz, P. Bayrak-toydemir, and S. L. Dugan, De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder, Eur. J. Med. Genet, vol.62, pp.55-60, 2018.

V. Faundes, W. G. Newman, L. Bernardini, N. Canham, J. Clayton-smith et al., Histone lysine methylases and demethylases in the landscape of human developmental disorders, Am. J. Hum. Genet, vol.102, pp.175-187, 2018.

M. L. Brinkmeier, K. A. Geister, M. Jones, M. Waqas, I. Maillard et al., The histone methyltransferase gene Absent, small, or homeotic discs-1 like is required for normal hox gene expression and fertility in mice, Biol. Reprod, vol.93, p.121, 2015.

M. Jones, J. Chase, M. Brinkmeier, J. Xu, D. N. Weinberg et al., , 2015.

, Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells, J. Clin. Invest, vol.125, 2007.

T. Nakamura, J. Blechman, S. Tada, T. Rozovskaia, T. Itoyama et al., ) huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.7284-7289, 2000.

G. Li, Z. Ye, C. Shi, L. Sun, M. Han et al., The histone methyltransferase Ash1l is required for epidermal homeostasis in mice, Sci. Rep, vol.7, p.45401, 2017.

Y. Song, L. Li, Y. Ou, Z. Gao, E. Li et al., Identification of genomic alterations in oesophageal squamous cell cancer, Nature, vol.509, pp.91-95, 2014.

L. Liu, S. Kimball, H. Liu, A. Holowatyj, and Z. Yang, Genetic alterations of histone lysine methyltransferases and their significance in breast cancer, Oncotarget, vol.6, pp.2466-2482, 2015.

A. Fujimoto, M. Furuta, Y. Totoki, T. Tsunoda, M. Kato et al., Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer, Nat. Genet, vol.48, pp.500-509, 2016.

Y. Zhang, W. Wu, and H. Qu, Integrated analysis of the gene expression changes during colorectal cancer progression by bioinformatic methods, J. Comput. Biol, vol.26, pp.1168-1176, 2019.

M. Chesi, E. Nardini, R. S. Lim, K. D. Smith, W. M. Kuehl et al., The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts, Blood, vol.9, pp.3025-3034, 1998.

P. Finelli, S. Fabris, S. Zagano, L. Baldini, D. Intini et al., Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by double-color fluorescent in situ hybridization, Blood, vol.94, pp.724-732, 1999.

I. Stec, T. J. Wright, G. B. Van-ommen, P. A. De-boer, A. Van-haeringen et al., WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(1;14) multiple myeloma, Hum. Mol. Genet, vol.7, pp.1071-1082, 1998.

A. D. Bergemann, F. Cole, and K. Hirschhorn, The etiology of Wolf-Hirschhorn syndrome, Trends Genet, vol.21, pp.188-195, 2005.

H. R. Hudlebusch, E. Santoni-rugiu, R. Simon, E. Ralfkiaer, H. H. Rossing et al., The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors, Clin. Cancer Res, vol.17, pp.2919-2933, 2011.

I. A. Asangani, B. Ateeq, Q. Cao, L. Dodson, M. Pandhi et al., Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer, Mol. Cell, vol.49, pp.80-93, 2013.

K. Nimura, K. Ura, H. Shiratori, M. Ikawa, M. Okabe et al., A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome, Nature, vol.460, pp.287-291, 2009.

H. Pei, L. Zhang, K. Luo, Y. Qin, M. Chesi et al., MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites, Nature, vol.470, pp.124-128, 2011.

H. Pei, X. Wu, T. Liu, K. Yu, D. F. Jelinek et al., The histone methyltransferase MMSET regulates class switch recombination, J. Immunol, vol.190, pp.756-763, 2013.

N. Sarai, K. Nimura, T. Tamura, T. Kanno, M. C. Patel et al., WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition, EMBO J, vol.32, pp.2392-2406, 2013.

S. Chitale and H. Richly, DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair, Nucleic Acids Res, vol.45, pp.5901-5912, 2017.

S. Chitale and H. Richly, DICER-and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites, J. Cell Biol, vol.217, pp.527-540, 2018.

A. J. Hartlerode, Y. Guan, A. Rajendran, K. Ura, G. Schotta et al., , vol.7, p.49211, 2012.

S. L. Sanders, M. Portoso, J. Mata, J. Bähler, R. C. Allshire et al., Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage, Cell, vol.119, pp.603-614, 2004.

G. Schotta, R. Sengupta, S. Kubicek, S. Malin, M. Kauer et al., A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse, Genes Dev, vol.22, pp.2048-2061, 2008.

R. L. Bennett, A. Swaroop, C. Troche, and J. D. Licht, The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer, Cold Spring Harb. Perspect. Med, vol.7, p.26708, 2017.

S. B. Hake, B. A. Garcia, E. M. Duncan, M. Kauer, G. Dellaire et al., Expression patterns and post-translational modifications associated with mammalian histone H3 variants, J. Biol. Chem, vol.281, pp.559-568, 2006.

S. Jang, C. Kang, H. Yang, T. Jung, H. Hebert et al., Structural basis of recognition and destabilization of the histone H2B, 2019.

, Genes Dev, vol.33, pp.620-625

E. J. Worden, N. A. Hoffmann, C. W. Hicks, and C. Wolberger, Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L, Cell, vol.176, pp.1490-1501, 2019.

S. Oh, K. Jeong, H. Kim, C. S. Kwon, and D. Lee, A lysine-rich region in Dot1p is crucial for direct interaction with H2B ubiquitylation and high level methylation of H3K79, Biochem. Biophys. Res. Commun, vol.399, pp.512-517, 2010.

C. I. Stoddard, S. Feng, M. G. Campbell, W. Liu, H. Wang et al., A nucleosome bridging mechanism for activation of a maintenance DNA methyltransferase, Mol. Cell, vol.73, pp.73-83, 2019.

H. Kang, Y. Choi, J. M. Lee, K. Choi, H. Kim et al., The histone methyltransferase, NSD2, enhances androgen receptor-mediated transcription, FEBS Lett, vol.583, pp.1880-1886, 2009.