P. Gubellini and P. Kachidian, Animal models of Parkinson's disease: An updated overview, a rat model of Parkinson's disease, vol.15, pp.750-761, 2015.

L. Hamelin, J. Lagarde, G. Dorothee, C. Leroy, M. Labit et al.,

L. C. Souza, H. Corne, L. Dauphinot, M. Bertoux, B. Dubois et al., IMABio team Clinical. 2016. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging, Polyamines: Bio-Molecules with, vol.139, pp.1252-1264, 2018.

, Diverse Functions in Plant and Human Health and Disease, Front Chem, vol.6, p.10

R. Iancu, P. Mohapel, P. Brundin, G. Paul, D. P. Jang et al., Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice, Behav Brain Res, vol.162, pp.187-192, 2005.

J. Jankovic, J. N. Jernberg, C. E. Bowman, M. J. Wolfgang, and S. Scafidi, Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain, J Neurol Neurosurg. Psychiatry, vol.79, pp.407-419, 2008.

R. F. Pfeiffer, W. Poewe, K. Seppi, C. M. Tanner, G. M. Halliday et al., Non-motor symptoms in Parkinson's disease, Parkinsonism Relat Disord, vol.94, pp.318-328, 2016.

A. E. Schrag and A. E. Lang, , vol.3, p.17013, 2017.

M. J. -ribeiro, J. Vercouillie, N. Arlicot, K. Mondon, V. Gissot et al., A simplified method for the diagnosis of striatal dopaminergic dysfunction using PET with a new fluorine DAT tracer, the 18F-LBT-999, J Nucl Med, vol.58, p.413, 2017.

J. O. Rinne, O. V. Anichtchik, K. S. Eriksson, J. Kaslin, L. Tuomisto et al., Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy, J Neurochem, vol.81, pp.954-960, 2002.

S. M. Rocha, T. Saraiva, A. C. Cristovao, R. Ferreira, T. Santos et al.,

C. Saraiva, G. Je, L. Cortes, J. Valero, G. Alves et al., Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation, J Neuroinflammation, vol.13, p.137, 2016.

A. -roy, A. Jana, K. Yatish, M. B. Freidt, Y. K. Fung et al.,

, Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases, Free Radic Biol Med, vol.45, pp.686-699

R. -rupprecht, V. Papadopoulos, G. Rammes, T. C. Baghai, J. Fan et al.,

G. Groyer, D. Adams, and M. Schumacher, Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders, Nat Rev Drug Discov, vol.9, pp.971-988, 2010.

K. Saijo, C. K. Glass, S. Sarkar, B. Gough, J. Raymick et al., Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain, J Cereb Blood Flow Metab, vol.11, pp.1493-1499, 2011.

S. Sérrière, C. Tauber, J. Vercouillie, D. Guilloteau, J. B. Deloye et al.,

L. Galineau and S. Chalon, In vivo PET quantification of the dopamine transporter in rat brain with, Nucl Med Biol, vol.41, issue.1, pp.106-113, 2014.

S. Sérrière, A. Doméné, J. Vercouillie, C. Mothes, S. Bodard et al., Assessment of the Protection of, 2015.

, Dopaminergic Neurons by an alpha7 Nicotinic Receptor Agonist

F. Lbt, -999 in a Parkinson's Disease Rat Model, Front Med (Lausanne), vol.2, p.61

M. D. Silva, C. Glaus, J. Y. Hesterman, J. Hoppin, G. H. Puppa et al., , 2013.

F. Fdg, PET imaging of a unilateral Parkinsonian animal model, Am J Nucl Med Mol Imaging, vol.3, pp.129-141

D. -silva-adaya, . Perez-de-la, V. Cruz, M. N. Herrera-mundo, and . Mendoza-macedo,

K. Villeda-hernandez, J. Binienda, Z. Ali, S. F. Santamaria, A. Song et al., Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine, Front Aging Neurosci, vol.105, p.65, 2008.

F. I. -tarazi, Z. T. Sahli, M. Wolny, and S. A. Mousa, Emerging therapies for, 2014.

, Parkinson's disease: from bench to bedside, Pharmacol Ther, vol.144, pp.123-133

K. -tatsch and G. Poepperl, Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update, J Nucl Med, vol.54, pp.1331-1338, 2013.

C. Thomas, J. Vercouillie, A. Doméné, C. Tauber, M. Kassiou et al.,

C. Destrieux, S. Sérrière, and S. Chalon, Detection of Neuroinflammation in a Rat Model of Subarachnoid Hemorrhage Using [18F]DPA-714 PET Imaging, Mol Imaging, 2016.

E. Thornton and R. Vink, Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson's disease, PLoS One, vol.7, 2012.

E. Tronci, E. Shin, A. Bjorklund, and M. Carta, Amphetamine-induced rotation and L-DOPA-induced dyskinesia in the rat 6-OHDA model: a correlation study, 2012.

, Ungerstedt, U. 1968. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons, Eur J Pharmacol, vol.73, p.45

S. Synapse--vingill, N. Connor-robson, and R. Wade-martins, Are rodent models of Parkinson's disease behaving as they should?, Behav Brain Res, 2017.

M. L. Vizuete, M. Merino, J. L. Venero, M. Santiago, J. Cano et al.,

, Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra, J Neurochem, vol.75, pp.540-552

Q. Wang, Y. Liu, and J. Zhou, Neuroinflammation in Parkinson's disease and its potential as therapeutic target, Transl Neurodegener, vol.4, p.19, 2015.

B. -worley, R. Powers, Z. Xie, A. Jones, J. T. Deeney et al., Inborn Errors of Long-Chain Fatty Acid beta-Oxidation Link Neural Stem Cell Self-Renewal to, Curr Metabolomics, vol.1, pp.92-107, 2013.

, Autism. Cell Rep, vol.14, pp.991-999

H. Zheng, L. Zhao, H. Xia, C. Xu, D. Wang et al., NMR-Based Metabolomics Reveal a Recovery from Metabolic Changes in the Striatum of 6-OHDA-Induced Rats Treated with Basic Fibroblast Growth Factor, Mol Neurobiol, vol.53, pp.6690-6697, 2016.