D. Meder, D. M. Herz, J. B. Rowe, S. Lehéricy, and H. R. Siebner, The role of dopamine in the brain -lessons learned from Parkinson's disease, NeuroImage, vol.190, pp.79-93, 2018.

L. B. Thal, I. D. Tomlinson, M. A. Quinlan, O. Kovtun, R. D. Blakely et al., Single quantum dot imaging reveals PKC?-dependent alterations in membrane diffusion and clustering of an attention-deficit hyperactivity disorder / autism / bipolar disorder-associated dopamine transporter variant, ACS Chem Neurosci, vol.10, pp.460-71, 2019.

F. Niccolini, P. Su, and M. Politis, Dopamine receptor mapping with PET imaging in Parkinson's disease, J Neurol, vol.261, pp.2251-63, 2014.

A. Gjegge, J. Reith, S. Dyve, G. Leger, M. Guttman et al., Dopa decarboxylase activity of the living human brain, Proc Natl Acad Sci, vol.88, pp.2721-2726, 1991.

S. A. Eshuis, R. P. Maguire, K. L. Leenders, S. Jonkman, and J. , Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson's disease, Eur J Nucl Med Mol Imaging, vol.33, pp.200-209, 2006.

C. S. Lee, A. Samii, V. Sossi, T. J. Ruth, M. Schulzer et al., In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease, Ann Neurol, vol.47, pp.493-503, 2000.

M. Ribeiro, M. Vidailhet, C. Loc'h, C. Dupel, J. Nguyen et al., Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease, Arch Neurol, vol.59, pp.580-586, 2002.

W. R. Martin, M. Wieler, A. J. Stoessl, and M. Schulzer, Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson's disease, Ann Neurol, vol.63, pp.388-94, 2008.

N. Okamura, V. L. Villemagne, J. Drago, S. Pejoska, R. K. Dhamija et al., In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133, J Nucl Med, vol.51, pp.223-231, 2010.

S. S. Xu, P. K. Alexander, Y. Lie, V. Dore, S. Bozinovski et al., Diagnostic accuracy of imaging brain vesicular monoamine transporter type 2 (VMAT2) in clinically uncertain parkinsonian syndrome (CUPS): a 3-year follow-up study in community patients, BMJ Open, vol.8, p.25533, 2018.

W. Li, N. P. Lao-kaim, A. A. Roussakis, A. Martín-bastida, N. Valle-guzman et al., 11C-PE2I and 18F-Dopa PET for assessing progression rate in Parkinson's: a longitudinal study, Mov Dis, vol.33, pp.117-144, 2018.

H. S. Yoo, S. J. Chung, S. Kim, J. S. Oh, J. S. Kim et al., The role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and frontotemporal dementia in the early stage, Eur J Nucl Med Mol Imaging, vol.45, pp.1585-95, 2018.

K. G. Mulvihill, Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters, Neurochem Int, vol.122, pp.94-105, 2019.

, Brooks DJ Molecular imaging of dopamine transporter, Aging Res Rev, vol.30, pp.114-135, 2016.

R. B. Innis, J. P. Seibyl, B. E. Scanley, M. Laruelle, A. Abi-dargham et al., Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease, Proc Natl Acad Sci, vol.90, pp.11965-11974, 1993.

J. W. Boja, W. M. Mitchell, A. Patel, T. A. Kopajtic, F. I. Carroll et al., High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain, Synapse, vol.12, pp.27-36, 1992.

M. Laruelle, E. Wallace, J. P. Seibyl, R. M. Baldwin, Y. Zea-ponce et al., Graphical, kinetic, and equilibrium analyses of in vivo [123I] beta-CIT binding to dopamine transporters in healthy human subjects, J Cereb Blood Flow Metab, vol.14, pp.982-94, 1994.

P. Emond, L. Garreau, S. Chalon, M. Boazi, M. Caillet et al., Synthesis and ligand binding of nortropane derivatives: N-substituted 2?-Carbomethoxy-3?-(4 ? -iodophenyl)nortropane and N-(3-Iodoprop-(2E)-enyl)-2?-carbomethoxy-3?-(3 ? ,4 ? -disubstituted phenyl)nortropane. New high-affinity and selective compounds for the dopamine transporter, J Med Chem, vol.40, pp.1366-72, 1997.

S. Chalon, L. Garreau, P. Emond, L. Zimmer, M. P. Vilar et al., Pharmacological characterization of (E)-N-(3-iodoprop-2-enyl)-2?-Carbomethoxy-3?-(4 ? -methylphenyl)nortropane as a selective and potent inhibitor of the neuronal dopamine transporter, J Pharmacol Exp Ther, vol.291, pp.648-54, 1999.

P. Emond, D. Guilloteau, and S. Chalon, PE2I: a radiopharmaceutical for in vivo exploration of the dopamine transporter, CNS Neurosci Ther, vol.14, pp.47-64, 2008.

M. Ziebell, B. B. Andersen, G. Thomsen, L. H. Pinborg, M. Karlsborg et al., Predictive value of dopamine SPECT imaging with [ 123 I]PE2I in patients with subtle parkinsonian symptoms, Eur J Nucl Med Mol Imaging, vol.39, pp.242-50, 2012.

L. Appel, M. Jonasson, T. Danfors, D. Nyholm, H. Askmark et al., Use of [ 11 C]PE2I PET in differential diagnosis of Parkinsonian disorders, J Nucl Med, vol.56, pp.234-276, 2015.

R. Arakawa, T. Ichimiya, H. Ito, A. Takano, M. Okumura et al., Increase in thalamic binding of [ 11 C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter, J Psychiatr Res, vol.43, pp.1219-1242, 2009.

E. Artiges, C. Leroy, M. Dubol, M. Prat, A. Pepin et al., Striatal and extrastriatal dopamine transporter availability in schizophrenia and its clinical correlates: a voxel-based and high-resolution PET study, vol.43, pp.1134-1176, 2017.

A. Jucaite, E. Fernell, C. Halldin, H. Forssberg, and L. Farde, Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity, Biol Psychiatry, vol.57, pp.229-267, 2005.

M. Dubol, C. Trichard, C. Leroy, A. L. Sandu, M. Rahim et al., Dopamine transporter and reward anticipation in a dimensional perspective: a multimodal brain imaging study, Neuropsychopharmacology, vol.43, pp.820-827, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01576551

S. Chalon, H. Hall, W. Saba, L. Garreau, F. Dollé et al., Pharmacological characterization of (E)-N-(4-fluorobut-2-enyl)-2beta-carbomethoxy-3beta-(4'-tolyl)nortropane (LBT-999) as a highly promising fluorinated ligand for the dopamine transporter, J Pharmacol Exp Ther, vol.317, pp.147-52, 2006.

F. Dollé, P. Emond, S. Mavel, S. Dezmphel, F. Hinnen et al., Synthesis, radiosynthesis and in vivo preliminary evaluation of [ 11 C]LBT-999, a selective radioligand for the visualization of the dopamine transporter with PET, Bioorg Med Chem, vol.14, pp.1115-1140, 2006.

F. Dollé, F. Hinnen, P. Emond, S. Mavel, Z. Mincheva et al., Radiosynthesis of [ 18 F]LBT-999, a selective radioligand for the visualization of the dopamine transporter with PET, J. Labelled Compd Rad, vol.49, pp.687-98, 2006.

F. Dollé, J. Helfenbein, F. Hinnen, S. Mavel, Z. Mincheva et al., One-step radiosynthesis of [ 18 F]LBT-999: a selective radioligand for the visualization of the dopamine transporter with PET, J. Labelled Compd Rad, vol.50, pp.716-739, 2007.

D. Guilloteau, P. Emond, J. L. Baulieu, L. Garreau, Y. Frangin et al., Exploration of the Dopamine Transporter: in vitro and in vivo characterization of a high-affinity and high-specificity iodinated tropane Derivative (E)-N-(3-iodoprop-2-enyl)-2?-carbomethoxy-3?-(4 ? -methylphenyl) nortropane (PE2I), Nucl Med Biol, vol.25, pp.331-338, 1998.

A. Varrone, V. Stepanov, R. Nakao, M. Toth, B. Gulyas et al., Imaging of the striatal and extrastriatal dopamine transporter with 18F-LBT-999: quantification, biodistribution, and radiation dosimetry in nonhuman primates, J Nucl Med, vol.52, pp.1313-1334, 2011.

S. Sérrière, C. Tauber, J. Vercouillie, D. Guilloteau, J. B. Deloye et al., In vivo PET quantification of the dopamine transporter in rat brain with [ 18 F]LBT-999, Nucl Med Biol, vol.41, pp.106-119, 2014.

S. Vetel, S. Sérrière, J. Vercouillie, J. Vergote, G. Chicheri et al., Extensive exploration of a novel rat model of Parkinson's disease using partial 6-hydroxydopamine lesion of dopaminergic neurons suggests new therapeutic approaches, Synapse, vol.73, p.22077, 2018.

S. Sérrière, A. Doméné, J. Vercouillie, C. Mothes, S. Bodard et al., Assessment of the protection of dopaminergic neurons by an alpha7 nicotinic receptor agonist, PHA 543613 using [(18)F]LBT-999 in a Parkinson's disease rat model, Front Med, vol.2, p.61, 2015.

S. Grealish, E. Diguet, A. Kirkeby, B. Mattson, A. Heuer et al., Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease, Cell Stem Cell, vol.15, pp.653-65, 2014.

N. Arlicot, J. Vercouillie, C. Malherbe, R. Bidault, V. Gissot et al., PET imaging of Dopamine Transporter with 18F-LBT999: first human exploration, J Nucl Med, vol.58, p.276, 2017.

M. J. Ribeiro, J. Vercouillie, N. Arlicot, K. Mondon, V. Gissot et al., A simplified method for the diagnosis of striatal dopaminergic dysfunction using PET with a new fluorine DAT tracer, the 18F-LBT-999, J Nucl Med, vol.58, p.413, 2017.

V. Gupta, R. Ranjan, R. Verma, E. S. Belho, D. Malik et al., Correlation of 99mTc-TRODAT-1 SPECT imaging findings and clinical staging of Parkinson's disease, Clin Nucl Med, vol.44, pp.347-50, 2019.

J. Mo, S. Axelsson, J. Jonasson, L. Larsson, A. Ögren et al., Dopamine transporter imaging with [ 18 F]FE-PE2I PET and [ 123 I]FP-CIT SPECT-a clinical comparison, EJNMMI Res, vol.8, p.100, 2018.