F. Bray, J. Ferlay, I. Soerjomataram, R. Siegel, L. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin, vol.68, pp.394-424, 2018.

A. D. Kinghorn, E. J. De-blanco, D. M. Lucas, H. L. Rakotondraibe, J. Orjala et al., Discovery of Anticancer Agents of Diverse Natural Origin, Anticancer Res, vol.36, pp.5623-5637, 2016.

R. Dominguez-perles, A. Abellan, D. Leon, F. Ferreres, A. Guy et al., Sorting out the phytoprostane and phytofuran profile in vegetable oils, Food Res. Int, vol.107, pp.619-628, 2018.

T. Durand, V. Bultel-ponce, A. Guy, S. Berger, M. J. Mueller et al., New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: The phytoprostanes, Lipids, vol.44, pp.875-888, 2009.

J. M. Galano, Y. Y. Lee, C. Oger, C. Vigor, J. Vercauteren et al., Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25 years of research in chemistry andbiology, Prog. Lipid Res, vol.68, pp.83-108, 2017.

J. P. Fessel, N. A. Porter, K. P. Moore, J. R. Sheller, and L. J. Roberts, Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension, Proc. Natl. Acad. Sci, vol.99, pp.16713-16718, 2002.

D. Il'yasova, P. Scarbrough, and I. Spasojevic, Urinary biomarkers of oxidative status, Clin. Chim. Acta, vol.413, pp.1446-1453, 2012.

M. J. Mueller, Archetype signals in plants: The phytoprostanes, Curr. Opin. Plant Biol, vol.7, pp.441-448, 2004.

K. Dueckershoff, S. Mueller, M. J. Mueller, and J. Reinders, Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana, Biochim. Biophys. Acta, vol.1784, 1975.

J. Gutermuth, M. Bewersdorff, C. Traidl-hoffmann, J. Ring, M. J. Mueller et al., Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo, J. Allergy Clin. Immunol, vol.120, pp.293-299, 2007.

C. Traidl-hoffmann, V. Mariani, H. Hochrein, K. Karg, H. Wagner et al., Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization, J. Exp. Med, vol.201, pp.627-636, 2005.

K. Karg, V. M. Dirsch, A. M. Vollmar, J. L. Cracowski, F. Laporte et al., Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition, Free Radic. Res, vol.41, pp.25-37, 2007.

R. A. Benndorf, E. Schwedhelm, A. Gnann, R. Taheri, G. Kom et al., Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: A potential link between oxidative stress and impaired angiogenesis, Circ. Res, vol.103, pp.1037-1046, 2008.

L. Minghetti, R. Salvi, M. Lavinia-salvatori, M. A. Ajmone-cat, C. De-nuccio et al., Nonenzymatic oxygenated metabolites of alpha-linolenic acid B1-and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-gamma activation. Free Radic, Biol. Med, vol.73, pp.41-50, 2014.

A. E. Barden, K. D. Croft, T. Durand, A. Guy, M. J. Mueller et al., Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men, J. Nutr, vol.139, pp.1890-1895, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420110

J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser et al., GLOBOCAN 2012: Estimated Cancer Incidence

. Iarc-cancerbase, International Agency for Research on Cancer, issue.11, 2013.

J. Y. Kim, H. D. Park, E. Park, J. W. Chon, and Y. K. Park, Growth-inhibitory and proapoptotic effects of alpha-linolenic acid on estrogen-positive breast cancer cells, Ann. N. Y. Acad. Sci, vol.1171, pp.190-195, 2009.

R. Deshpande, P. Mansara, S. Suryavanshi, and R. Kaul-ghanekar, Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation, J. Mol. Biochem, vol.2, pp.6-17, 2013.

W. E. Hardman and G. Ion, Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut, Nutr. Cancer, vol.60, pp.666-674, 2008.

M. Vara-messler, M. E. Pasqualini, A. Comba, R. Silva, C. Buccellati et al., Increased dietary levels of alpha-linoleic acid inhibit mammary tumor growth and metastasis, Eur. J. Nutr, vol.56, pp.509-519, 2017.

J. K. Saggar, J. Chen, P. Corey, and L. U. Thompson, Dietary flaxseed lignan or oil combined with tamoxifen treatment affects MCF-7 tumor growth through estrogen receptor-and growth factor-signaling pathways, Mol. Nutr. Food Res, vol.54, pp.415-425, 2010.

J. S. Truan, J. M. Chen, and L. U. Thompson, Flaxseed oil reduces the growth of human breast tumors (MCF-7) at high levels of circulating estrogen, Mol. Nutr. Food Res, vol.54, pp.1414-1421, 2010.

S. El-fangour, A. Guy, V. Despres, J. P. Vidal, J. C. Rossi et al., Total synthesis of the eight diastereomers of the syn-anti-syn phytoprostanes F1 types I and II, J. Organ. Chem, vol.69, pp.2498-2503, 2004.

E. Pinot, A. Guy, A. Fournial, L. Balas, J. C. Rossi et al., Total Synthesis of the Four Enantiomerically Pure Diasteroisomers of the Phytoprostanes E1Type II and of the 15-E2t-Isoprostanes, J. Organ. Chem, vol.73, pp.3063-3069, 2008.

C. Cuyamendous, K. S. Leung, T. Durand, J. C. Lee, C. Oger et al., Synthesis and discovery of phytofurans: Metabolites of alpha-linolenic acid peroxidation, Chem. Commun, vol.51, pp.15696-15699, 2015.

D. Miles, G. Von-minckwitz, and A. D. Seidman, Combination versus sequential single-agent therapy in metastatic breast cancer, Oncologist, vol.7, pp.13-19, 2002.

K. Orr, N. E. Buckley, P. Haddock, C. James, J. L. Parent et al., Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs), Oncotarget, vol.7, pp.55458-55472, 2016.

G. L. Keating, H. M. Reid, S. B. Eivers, E. P. Mulvaney, and B. T. Kinsella, Transcriptional regulation of the human thromboxane A2 receptor gene by Wilms' tumor (WT)1 and hypermethylated in cancer (HIC) 1 in prostate and breast cancers, Biochim. Biophys. Acta, vol.1839, pp.476-492, 2014.

L. Rosenfeld, G. J. Grover, C. T. Stier, and . Jr, Ifetroban sodium: An effective TxA2/PGH2 receptor antagonist, Cardiovasc. Drug Rev, vol.19, pp.97-115, 2001.

J. S. Huang, S. K. Ramamurthy, X. Lin, and G. C. Le-breton, Cell signalling through thromboxane A2 receptors, Cell. Signal, vol.16, pp.521-533, 2004.

J. Bauer, A. Ripperger, S. Frantz, S. Ergun, E. Schwedhelm et al., Pathophysiology of isoprostanes in the cardiovascular system: Implications of isoprostane-mediated thromboxane A2 receptor activation, Br. J. Pharmacol, vol.171, pp.3115-3131, 2014.

G. Watkins, A. Douglas-jones, R. E. Mansel, and W. G. Jiang, Expression of thromboxane synthase, TBXAS1 and the thromboxane A2 receptor, TBXA2R, in human breast cancer, Int. Semin. Surg. Oncol, 2005.

X. Li and H. H. Tai, Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells, Carcinogenesis, vol.30, pp.1606-1613, 2009.

N. Nakahata and . Thromboxane, Physiology/pathophysiology, cellular signal transduction and pharmacology, Pharmacol. Ther, vol.118, pp.18-35, 2008.

M. J. Sandi, T. Hamidi, C. Malicet, C. Cano, C. Loncle et al., p8 expression controls pancreatic cancer cell migration, invasion, adhesion, and tumorigenesis, J. Cell. Physiol, vol.226, pp.3442-3451, 2011.

M. Vogler, S. Vogel, S. Krull, K. Farhat, P. Leisering et al., Hypoxia modulates fibroblastic architecture, adhesion and migration: A role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution, PLoS ONE, vol.8, 2013.

L. Fontana, C. Giagulli, P. Minuz, A. Lechi, and C. Laudanna, 8-Iso-PGF2 alpha induces beta 2-integrin-mediated rapid adhesion of human polymorphonuclear neutrophils: A link between oxidative stress and ischemia/reperfusion injury, Arterioscler. Thromb. Vasc. Biol, vol.21, pp.55-60, 2001.

P. Minuz, G. Andrioli, M. Degan, S. Gaino, R. Ortolani et al., The F 2 -isoprostane 8-epiprostaglandin F 2? increases platelet adhesion and reduces the antiadhesive and antiaggregatory effects of NO, Arterioscler. Thromb. Vasc. Biol, vol.18, pp.1248-1256, 1998.

E. H. Heiss, T. V. Tran, K. Zimmermann, S. Schwaiger, C. Vouk et al., Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata, J. Nat. Prod, vol.77, pp.503-508, 2014.

M. C. Jaramillo and D. D. Zhang, The emerging role of the Nrf2-Keap1 signaling pathway in cancer, Genes Dev, vol.27, pp.2179-2191, 2013.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI