, INSERM U1219, Groupe d'Imagerie Neurofonctionnelle CNRS/CEAU5293

(. B. , ). , U. Bordeaux, (. G. , C. T. et al., Boston University School of Public Health; The National Heart, Lung, and Blood Institute's Framingham Heart Study, and Departments of Epidemiology (B.M.P., W.T.L.), Health Services (B.M.P.)

E. H. , R. S. , J. W. , M. B. , and J. D. , University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research, Institute for Medical Informatics, Statistics and Documentation (E.H.), and Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging)

M. I. and Y. , Population Health Sciences, Brain Center Rudolf Magnus (M.K.I.), Department of Epidemiology, Julius Center for Health Sciences and Primary Care

P. John,

B. D. and P. F. ,

, Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.), and Farr Institute of Health Informatics Research and Institute of Health Informatics, Frankston Hospital, Central Clinical School, and School of Clinical Sciences

C. L. , S. Seshadri, ). , S. Antonio, ;. Chauhan et al., from the French National Research Agency (ANR) and from the Fondation Leducq. S.D. is supported by a starting grant from the European Research Council (SEGWAY), a grant from the Joint Programme of Neurodegenerative Disease research (BRIDGET), from the European Union's Horizon 2020 research and innovation programme under grant agreements No 643417 & No 640643, and by the Initiative of Excellence of Bordeaux University, Munich Cluster for Systems Neurology (SyNergy) (M.D.), p.24

. Ag026395, Banner Sun Health Research Institute, P30 AG019610, p.1

R. Ag10483, . Ca129769, and . R01-mh080295, , p.50

R. Ag008702 and . University, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG06781, UO1 HG004610; Indiana University, pp.30-10133

. Ag005146, Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219, pp.30-013854

, Oregon Health & Science University, p.30

. Ag008017, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, pp.1-30146

. Tgen, University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581, pp.30-010129

P. Ag016575 and . Ag016576, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724, P50, p.1

. Ag027944,

. Ag005681, S. E. Vermeer, W. T. Longstreth, and P. J. Koudstaal, Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232, the Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of References 1, Lancet Neurol, vol.6, pp.611-619, 2007.

W. T. Longstreth, Brain vascular disease: overt and covert, Stroke, vol.36, pp.2062-2063, 2005.

M. Saini, K. Ikram, S. Hilal, A. Qiu, N. Venketasubramanian et al., Silent stroke: not listened to rather than silent, Stroke, vol.43, pp.3102-3104, 2012.

S. Debette, A. Beiser, and C. Decarli, Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study, Stroke, vol.41, pp.600-606, 2010.

C. Bernick, L. Kuller, and C. Dulberg, Silent MRI infarcts and the risk of future stroke: the Cardiovascular Health Study, Neurology, vol.57, pp.1222-1229, 2001.

W. T. Longstreth, C. Dulberg, and T. A. Manolio, Incidence, manifestations, and predictors of brain infarcts defined by serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study, Stroke, vol.33, pp.2376-2382, 2002.

S. Schilling, A. L. Destefano, and P. S. Sachdev, APOE genotype and MRI markers of cerebrovascular disease: systematic review and meta-analysis, Neurology, vol.81, pp.292-300, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01171962

A. C. Morrison, C. M. Ballantyne, M. Bray, L. E. Chambless, A. R. Sharrett et al., LPL polymorphism predicts stroke risk in men, Genet Epidemiol, vol.22, pp.233-242, 2002.

M. J. Van-rijn, M. J. Bos, and M. Yazdanpanah, Alpha-adducin polymorphism, atherosclerosis, and cardiovascular and cerebrovascular risk, Stroke, vol.37, pp.2930-2934, 2006.

J. Song, O. J. Kim, and H. S. Kim, Endothelial nitric oxide synthase gene polymorphisms and the risk of silent brain infarction, Int J Mol Med, vol.25, pp.819-823, 2010.

N. S. Jenny, R. P. Tracy, and M. S. Ogg, In the elderly, interleukin-6 plasma levels and the -174G>C polymorphism are associated with the development of cardiovascular disease, Arterioscler Thromb Vasc Biol, vol.22, pp.2066-2071, 2002.

M. Fornage, Y. A. Chiang, and E. S. O'meara, Biomarkers of inflammation and MRIdefined small vessel disease of the brain: the Cardiovascular Health Study, Stroke, vol.39, pp.1952-1959, 2008.

M. Serizawa, T. Nabika, and Y. Ochiai, Association between PRKCH gene polymorphisms and subcortical silent brain infarction, Atherosclerosis, vol.199, pp.340-345, 2008.

M. Van-oijen, E. Y. Cheung, and C. E. Geluk, Haplotypes of the fibrinogen gene and cerebral small vessel disease: the Rotterdam scan study, J Neurol Neurosurg Psychiatry, vol.79, pp.799-803, 2008.

Y. J. Jeon, O. J. Kim, and S. Y. Kim, Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk, Arterioscler Thromb Vasc Biol, vol.33, pp.420-430, 2013.

S. Debette, J. C. Bis, and M. Fornage, Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium, Stroke, vol.41, pp.210-217, 2010.

Y. C. Zhu, C. Dufouil, C. Tzourio, and H. Chabriat, Silent brain infarcts: a review of MRI diagnostic criteria, Stroke, vol.42, pp.1140-1145, 2011.

B. F. Verhaaren, S. Debette, and J. C. Bis, Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI, Circ Cardiovasc Genet, vol.8, pp.398-409, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198723

G. Project, C. Abecasis, G. R. Auton, and A. , An integrated map of genetic variation from 1,092 human genomes, Nature, vol.491, pp.56-65, 2012.

A. P. Morris, Transethnic meta-analysis of genomewide association studies, Genet Epidemiol, vol.35, pp.809-822, 2011.

C. J. Willer, Y. Li, and G. R. Abecasis, METAL: fast and efficient meta-analysis of genomewide association scans, Bioinformatics, vol.26, pp.2190-2191, 2010.

X. Wang, H. X. Chua, and P. Chen, Comparing methods for performing trans-ethnic metaanalysis of genome-wide association studies, Hum Mol Genet, vol.22, pp.2303-2311, 2013.

B. Han and E. Eskin, Random-effects model aimed at discovering associations in metaanalysis of genome-wide association studies, Am J Hum Genet, vol.88, pp.586-598, 2011.

N. Franceschini, F. J. Van-rooij, and B. P. Prins, Discovery and fine mapping of serum protein loci through transethnic meta-analysis, Am J Hum Genet, vol.91, pp.744-753, 2012.

G. W. Beecham, K. Hamilton, and A. C. Naj, Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias, PLoS Genet, vol.10, p.1004606, 2014.

D. M. Evans, D. Smith, and G. , Mendelian randomization: new applications in the coming age of hypothesis-free causality, Annu Rev Genomics Hum Genet, vol.16, pp.327-350, 2015.

J. Bowden, D. Smith, G. Burgess, and S. , Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression, Int J Epidemiol, vol.44, pp.512-525, 2015.

H. Zhong and R. L. Prentice, Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies, Biostatistics, vol.9, pp.621-634, 2008.

T. M. Trask, T. M. Ritty, T. Broekelmann, C. Tisdale, and R. P. Mecham, N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly, Biochem J, vol.340, pp.693-701, 1999.

R. Ratnapriya, X. Zhan, and R. N. Fariss, Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration, Hum Mol Genet, vol.23, pp.5827-5837, 2014.

H. R. Warren, E. Evangelou, and C. P. Cabrera, Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk, Nat Genet, vol.49, pp.403-415, 2017.

J. L. Del-aguila, A. L. Beitelshees, and R. M. Cooper-dehoff, Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans, Pharmacogenomics J, vol.14, pp.35-40, 2014.

J. P. Fanning, A. J. Wesley, A. A. Wong, and J. F. Fraser, Emerging spectra of silent brain infarction, Stroke, vol.45, pp.3461-3471, 2014.

M. Volpe, E. A. Rosei, E. Ambrosioni, G. Leonetti, B. Trimarco et al., Reduction in estimated stroke risk associated with practice-based stroke-risk assessment and awareness in a large, representative population of hypertensive patients: results from the ForLife study in Italy, J Hypertens, vol.25, pp.2390-2397, 2007.

G. J. Hankey and I. Study, Stroke: fresh insights into causes, prevention, and treatment, Lancet Neurol, vol.10, pp.2-3, 2011.

V. Tikhonoff, H. Zhang, T. Richart, and J. A. Staessen, Blood pressure as a prognostic factor after acute stroke, Lancet Neurol, vol.8, pp.938-948, 2009.

J. P. Fanning, A. A. Wong, and J. F. Fraser, The epidemiology of silent brain infarction: a systematic review of population-based cohorts, BMC Med, vol.12, p.119, 2014.

J. J. Freiberg, A. Tybjaerg-hansen, J. S. Jensen, and B. G. Nordestgaard, Nonfasting triglycerides and risk of ischemic stroke in the general population, JAMA, vol.300, pp.2142-2152, 2008.

C. Emerging-risk-factors, D. Angelantonio, E. Sarwar, and N. , Major lipids, apolipoproteins, and risk of vascular disease, JAMA, vol.302, 1993.

S. Schilling, C. Tzourio, and C. Dufouil, Plasma lipids and cerebral small vessel disease, Neurology, vol.83, pp.1844-1852, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01196098

B. Bulik-sullivan, H. K. Finucane, and V. Anttila, An atlas of genetic correlations across human diseases and traits, Nat Genet, vol.47, pp.1236-1241, 2015.

D. Carmelli, C. Decarli, and G. E. Swan, Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins, Stroke, vol.29, pp.1177-1181, 1998.

L. D. Atwood, P. A. Wolf, and N. L. Heard-costa, Genetic variation in white matter hyperintensity volume in the Framingham Study, Stroke, vol.35, pp.1609-1613, 2004.

M. Fornage, S. Debette, and J. C. Bis, Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium, Ann Neurol, vol.69, pp.928-939, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01154260

Z. Arvanitakis, A. W. Capuano, S. E. Leurgans, A. S. Buchman, D. A. Bennett et al., The relationship of cerebral vessel pathology to brain microinfarcts, Brain Pathol, vol.27, pp.77-85, 2017.

S. E. Vermeer, N. D. Prins, T. Den-heijer, A. Hofman, P. J. Koudstaal et al., Silent brain infarcts and the risk of dementia and cognitive decline, N Engl J Med, vol.348, pp.1215-1222, 2003.

, This article cites 46 articles, 19 of which you can access for free at: Permissions & Licensing, pp.1526-632

, All rights reserved. Print 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2019 The Author(s). Published by ® is the official journal of the American Academy of Neurology