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Abstract 

The aim of phase II single-arm clinical trials of a new drug is to determine whether it has 

sufficient promising activity to warrant its further development. For the last several years 

Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for 

earlier phase trials as they take into account information that accrues during a trial. Predictive 

probabilities are then updated and so become more accurate as the trial progresses. Suitable 

priors can act as pseudo samples, which make small sample clinical trials more informative.  

Thus patients have better chances to receive better treatments. The goal of this paper is to 

provide a tutorial for statisticians who use Bayesian methods for the first time or investigators 

who have some statistical background. In addition, real data from three clinical trials are 

presented as examples to illustrate how to conduct a Bayesian approach for phase II single-

arm clinical trials with binary outcomes. 
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1. INTRODUCTION 

Phase II clinical trials regroup a large panel of investigative studies, that is, form very small 

single-arm studies to randomized studies and compare several dose groups with a control 

group. The primary goal of phase II clinical trials is not to provide definitive evidence of 

treatment efficacy, but to propose a promising treatment for further investigations. In this 

context, most of the development of phase II designs has been in the area of oncology, where 

the severity of the disease makes early stopping particularly desirable 1.  

 

In cancer trials, after determining the maximum tolerated dose, one continues to determine 

whether the new treatment has an anti-tumor effect. The objective of phase II cancer trials is 

to estimate the magnitude of this effect (in terms of tumor response or survival), and to gather 

additional information on safety. The most common phase II design is single-armed, that is, 

patients are treated with the new treatment, and the controls are the pooled patients previously 

treated with the current standard therapy. In this context, the main objective is to determine 

whether the new therapy is promising and requires further experimentation. 

 

Several Bayesian designs for phase II single-arm cancer trials have been proposed over the 

past years 2-8 . Most of these reports only focus on one of the design aspects such as sample 

size determination, stopping rules, response probability determination, etc. However, 

Bayesian methodology has rarely been applied in practice. Guidelines and worked examples 

are surely needed to help the implementation of the methodology. The goal of this paper is to 

provide a tutorial of conducting a Bayesian approach for phase II single-arm trials with binary 

outcomes. 

 

This paper describes some approaches that are simple to implement with basic statistical 

software. In section 2, we describe the Bayesian framework, the choice of the prior 

distribution, sample size determination, stopping criteria, and some practical procedures. We 

simplified the statistical parts in the main text, but details are given in the appendix. In section 

3, we provide three examples to illustrate how to implement Bayesian methods. Practical 

guidelines for conducting Bayesian clinical trials are shown in section 4. Finally, a conclusion 

is given in section 5. 

 

 



2. METHOD 

2.1. The Bayesian framework 

Statistical analysis can be performed sequentially, after each observed response (success or 

failure) from an individual patient or a group of patients.  The probability of success can be 

modeled based on a beta model on the interval [0,1] 2,9.  The uniform distribution is just the 

special case, which can be used to estimate probabilities of success when clinicians do not 

have a strong idea about the mean probability of response. Moreover, the beta distribution 

simplifies mathematical calculations since it provides conjugate priors i.e. the prior 

distribution has the same type of distribution as the posterior distribution. 

 

The observed response is a binary variable, either a success or failure outcome from the 

administered treatment. With n being the number of observed patients, the number of 

observed responses , is a binomial variable , where  is the probability of response. 

 

Bayesian inference: According to the Bayesian framework, p is a random variable with the 

prior distribution  where  and . The values of  and  are fixed at the 

beginning of the trial (details are in the next section). The mean and the variance of the 

 density are given by  and . 

After n patients are included into the trial, the posterior distribution of the probability of 

response, is given by , with its mean defined by 

. 

Let W95 be the width of the 95% credible interval running from the 2.5th to the 97.5th 

percentiles. Credible intervals represent a measurement of precision used in Bayesian 

inference (mathematical details are given in appendix). 

 

2.2. The choice of the prior distribution 

Specification of the parameters in the prior probability model is required. The prior 

distribution is a probability distribution that quantifies knowledge regarding unknown 

quantities in the absence of some evidence (eg, model parameters) prior to observing the data. 

The uncertainty about the real probability of response can be expressed as either a skeptical 

prior (skepticism about a large treatment effect) or an enthusiastic prior (the confidence of 

investigators about the new treatment 7,10,11).  
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There are several different approaches for choosing values for  and . Some approaches are 

quite simple and practical, such as to interpret  as the total number of subjects from a 

previous trial with  being the number of successes and being the number of failures 13; set 

both  and  to be equal to 1 to form a vague uniform prior distribution with the prior mean 

being equal to 0.5. Others are complicated, such as to define  and  to form computer based 

elicitations using the 95% credible intervals (W95) of the  density11. The following 

two approaches use the knowledge of the mean probability of response: construct a prior 

distribution with  being the mean probability of response and . Secondly derive  

and  from the mean and the variance of the mean probability of response. For instance,  

and  are solutions of an equation where the mean of a prior is the mean probability of 

response with a fixed variance.  The mean probability of response can easily be obtained from 

(i) preclinical trials, (ii) previous clinical trials and information from the medical literature 

and (iii) expert opinion interrogation 12.  

 

2.3.  Sample size determination 

In a Bayesian approach, a particular sample size does not need to be chosen 14. However, a 

maximum sample size, N, must be determined before the trial begins for practical reasons. In 

recent draft guidelines from the FDA on the use of Bayesian statistics in medical research, it 

is recommended that a minimum sample size should be decided in advance according to 

safety and effectiveness endpoints 16. 

 

Several approaches have been proposed where sample size determination is based on the 

posterior estimation of the mean response rate 7,10,15. We consider one of the following rules.  

Rule 1: Specify N so that the trial is ended only if the posterior response probability 

distribution achieves a specified degree of precision.  

Rule 2: Specify N so that the trial is ended only if the probability of obtaining a promising 

result is not smaller than a specific value.  

 

2.4. Stopping criteria 

Several stopping criteria have been developed and applied so that a trial can be stopped earlier 

because either the treatment works or the treatment does not work. They are based on either 

the posterior density of the response probability, or the predictive distribution of the number 
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of hypothetical responses from m additional patients 6,10,17-19.  We list some stopping criteria 

as follows: 

Rule 1: Stop for efficacy; if there is a high probability that the estimated response probability 

is higher than a maximal response probability threshold. 

Rule 2: Stop for inefficacy; if there is a high probability that the estimated response 

probability is lower than a minimal response probability threshold. 

Rule 3: Stop for efficacy; if the value of cumulative predictive distribution (see appendix) of 

the number of responses from m additional patients is high, that is, stop if the part of the upper 

tail of the predictive distribution is high. 

Rule 4: Stop for inefficacy; if the value of cumulative predictive distribution of the number of 

responses from m additional patients is high, that is, stop if the part of the lower tail of the 

predictive distribution is high. 

Rule 5: Stop for satisfactory precision estimation of the response probability; if the maximal 

predictive gain of m future patients on the precision of the response probability (credible 

interval width) is low. 

All parameters especially stopping rule thresholds are fixed by statisticians and are usually 

obtained from a simulation study prior to the trial using all of the study features. 

In practice, these stopping criteria can be used simultaneously.  For example, 

(1) if at least one of the stopping criteria for inefficacy is fulfilled, then we recommend 

stopping the trial for inefficacy. Or 

(2) if at least one of the stopping criteria for efficacy is fulfilled, then we recommend stopping 

the trial for efficacy. Or  

(3) if (1) and (2) are not fulfilled and stopping rule 5 is, then we recommend stopping on the 

grounds of futility. 

 

2.5. In practice: the conduct of the trial 

Before beginning the trial: 

1) Clinicians and statisticians should work together to define prior features of the beta 

distribution (see section 2.2). 

2) The maximum sample size N can be determined from a calculation (see section 2.3) or be 

adapted to the inclusion capacity of collaborating centers. 

3) If investigators decided to include stopping rules in the study, statisticians should inform 

the investigators in details which stopping rules are to be used for their study and fix 

stopping thresholds (see section 2.4). 



4) If necessary, statisticians should assess operating characteristics of the trial by simulations. 

 

Once the trial begins: 

1) Patients are included sequentially in the study. 

2) Once the patient’s or group of patients’ outcomes are known, statisticians can sequentially 

apply stopping rules if stopping rules are planned.  

3) After the last patient’s outcomes are known, statisticians can estimate the final updated 

response probability with credible intervals. 

 

3. EXAMPLES 

 

3.1. The DST trial 

A single-arm clinical trial for evaluating the donor-specific transfusion (DST) on living-

related liver transplantation is ongoing in Kyoto University Hospital. The primary endpoint is 

acute rejection on recipients within 6 months after transplantation and the “response” is 

defined as no acute rejection. We use a beta distribution with parameters (a=1 and b=1) as a 

vague uniform prior distribution because there was no information for the new treatment. The 

prior mean of the probability of success is 0.5. The planned maximum sample size is 35, 

which was determined by the estimated number of patients. The minimum sample size is 10, 

which was determined based on a minimum level of information to evaluate safety endpoints. 

A maximal response probability threshold is 0.75, based on the investigators’ opinions. A 

minimal response probability threshold is 0.55, which was estimated based on a historical 

dataset deriving from 155 recipients of living-related liver transplantations. If 35 patients are 

recruited and the maximal response number threshold 26 (nearly equal to 35 times 0.75) is 

observed, then the 95% credible interval width (W95,35) of the posterior probability will be 

0.28.  

 

Two stopping rules are planned, stopping rules 3 and 4 of section 2.4.  For Stopping rule 3, 

the cumulative response probability is based on the maximal response number threshold being 

26 and the maximum sample size being 35; If this cumulative probability is higher than 0.95 

(t3=0.95 appendix), we will recommend stopping the trial for efficacy. For Stopping rule 4, 

the cumulative response probability is based on the minimal response number threshold being 

19 (nearly equal to 35 times 0.55); If this cumulative probability is higher than 0.95 (t4=0.95 

appendix), we will recommend stopping the trial for inefficacy. Six interim analyses are 



planned. The first interim will start after 10 patients are recruited.  At each interval between 

two interims, 5 additional patients will be recruited. The stopping boundary in this setting is 

shown in Figure 1.  The upper boundary is to stop the trial earlier on the basis of efficacy.  

The lower boundary is to stop the trial earlier on the basis of inefficacy. 

 

To assess operating characteristics of the design, we did some simulations. Table 1 shows 

operating characteristics from 1000 simulations, including the results from t3 and t4 being 

0.80, 0.85, 0.90, and 0.95. The estimated type I error rates in the case where the true response 

probability is 0.55 are between 0.026 and 0.045, the powers in the case where the true 

response parameter is 0.75 are between 0.644 and 0.693, and the expected sample sizes range 

from 23.7 to 29.6. The simulation results show that the Bayesian design would have given 

acceptable type I error rate and moderate power from the frequentist point of view. 

 

Simulations were also conducted for a skeptic prior, Beta (8,7) and an enthusiastic prior, Beta 

(12,4).  Designs under the skeptic prior had least powers while designs under the enthusiastic 

prior achieved highest powers but with inflated type I error rates. 

 

3.2. The arsenic trioxide trials 

Two phase II single-arm trials aiming at estimating the success probability of arsenic trioxide 

in advanced Multiple Myeloma (MM) and in Acute Promyelocytic Leukaemia (APL), 

respectively, were previously conducted 20. In these trials a Bayesian approach was conducted 

simultaneously as the standard approach. A success observation was defined as either 

complete or partial remission. At the beginning of the trials investigators were asked for the 

mean success probabilities in each disease, they guessed the success rate to be 10% in MM 

and 30% in APL. Two prior distributions for each trial were constructed, but in this example 

only one for each trial is presented. For the MM trial, the mean of the beta prior was equal to 

0.1, and the variance was fixed to be equal to 0.0225.  Therefore, the values of the beta 

distribution parameters were  and  (Figure 2 A).  For the APL trial, the 

mean of the beta prior was equal to 0.3, and the variance was fixed to be equal to 0.0191.  

Therefore, the values were  and  (Figure 2 B). Thus, in the two trials the mean 

prior response probability was fixed equal to the mean response probability given by the 

investigators.  
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From October 1998 to April 1999, 12 patients were included in the MM trial. Table 2 

summarises the sequential computation of the estimated posterior mean response probability 

calculated after each patient inclusion and Figure 2 C represents the posterior estimation of 

the distribution of the response probability. Among all of the stopping rules, stopping rule 2 

recommended ending the trial for inefficacy after the inclusion of 7 patients (Figure 3 A), 

since there is a high probability that the estimated response probability is lower than a 

minimal response probability threshold, i.e. . The estimated mean 

posterior response probability was 0.03. Stopping rule 4 recommended ending the trial for 

inefficacy after the inclusion of 9 patients, assuming that 5 more hypothetical patients are 

enrolled and treated after the interim analysis (Figure 3 C). That is, the probability of 

observing no response for the 5 future hypothetical patients was higher than the stopping 

critical value, 85%. Moreover, the stopping rule based on the maximal predictive gain on the 

width of the 95% credible intervals (rule 5) of 5 future patients did not recommended stopping 

for a satisfactory estimation of the response probability after the inclusion of 12 patients 

(Figure 3 E). The estimated mean posterior response probability was 0.025.  If no stopping 

rule was applied, that is, the maximum sample size of 12 patients was reached, the trial would 

conclude inefficacy of the arsenic trioxide with the associated estimated mean posterior 

response probability being 0.020 (95% credible intervals: 0-0.12) which was far below the 

10% response probability set initially by the investigators. In conclusion, the trial was ended 

for inefficacy of the arsenic trioxide in the treatment of Multiple Myeloma. 

 

In the APL trial 20 patients were included from October 1998 to December 2001. The 

sequential computation of the estimated posterior mean response probability calculated after 

each patient’s inclusion is given in Table 2 and Figure 2 D represents the posterior estimation 

of the response probability distribution. Among all of the stopping rules, Stopping rule 1 

recommended ending the trial for efficacy after the inclusion of 10 patients (Figure 3 B), since 

there is a high probability that the estimated response probability is higher than a maximal 

response probability threshold, i.e. . The estimated mean posterior 

response probability was 0.450. Stopping rule 3 recommended ending the trial for efficacy 

after the inclusion of 20 patients, using 5 more hypothetical patients (Figure 3 D). That is, the 

probability of observing two or more responses for the 5 future hypothetical patients was 

higher than the stopping critical value, 85%. The estimated mean posterior response 

probability was 0.600. Finally, the stopping rule based on the maximal predictive gain on the 
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width of the 95% credible intervals (rule 5) of 5 future patients recommended stopping for a 

satisfactory estimation of the response probability after the inclusion of 14 patients (Figure 3 

E). The estimated mean posterior response probability was 0.500.  If no stopping rule was 

applied, that is, the maximum sample size of 20 patients was reached, the trial would 

conclude efficacy of the arsenic trioxide with the associated estimated mean posterior 

response probability being 0.6 (95% credible intervals: 0.42-0.76), which was higher than the 

30% response probability expected initially by the investigators. In conclusion, the trial was 

ended for efficacy of the arsenic trioxide in the treatment of Acute Promyelocytic Leukaemia. 

 

4. PRACTICAL GUIDELINES 

In the precedent sections several methods have been presented, in practice, the investigators 

who design the clinical trial has to choose which method is more adapted to their need.  

During the design of the clinical trial a sensitivity analysis is recommended. The analysis 

should take look at the influence of some prior choice on the trial final recommendation, that 

is, values of a and b of the beta distribution. During this phase the choice of the method fixing 

the beta distribution parameters is to be advised following the available information on the 

tested drug or procedure. For instance, if the drug or procedure is already used for another 

disease or there are available published data an informative prior is recommended, by 

contrast, if the drug or procedure is new a vague prior will be then more appropriate.  

Sample size determination using either rule 1 or rule 2 are depending on the wished trial result 

in terms of point estimate or precision. The use of stopping rules is optional, the authors, 

through, recommends to always use at least the stopping rules associated to the drug or the 

procedure inefficacy (rule 2 or/and rule 4 in the section 2.4). It would be unethical to continue 

and to include new patients using an inefficient drug or procedure. 

Finally, most available statistical software provide a beta distribution procedure easily 

applicable. There is no macro or software that allows calculating and making the sensitivity 

analysis and the trial conduct, but this paper can be used as guideline in programming and 

conducting the clinical trial.  

 

5. CONCLUSIONS 

The aim of this paper is to give practical guidelines with realistic examples for conducting 

phase II single-arm Bayesian clinical trials with binary outcomes. The Bayesian process 

allows updating knowledge gradually rather than restricting revisions in a study design with 

fixed sample sizes. Moreover, it includes the ability to use predictive probabilities and make 



inferences on response estimations. The trials conducted with Bayesians approaches can be 

updated at any time and without penalties 3. 

 

When using a Bayesian design in trials, it is important to have a real collaboration between 

clinicians and statisticians. The clinicians should have some ideas about the mean response 

rate and recommend upper and lower response rate thresholds for which further clinical 

investigations will be recommended or not. This enables to construct a prior distribution that 

will be updated with patient accrual. Feasible sample size and patient accrual rate should be 

discussed. When reporting results, it is necessary to add figures or tables that show how the 

response rate progressed from the beginning of the trial to the end. Other important 

information such as stopping rules and quantification of the precision (probability or credible 

intervals) should be carefully considered. Simulations should be conducted prior to a trial.  

This enables investigators to see different design properties under several scenarios.  Prior 

specifications and stopping rules could then be modified until a satisfactory design is 

achieved.  Finally, a R script is available on request from the authors. 
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Appendix 
 
Credible intervals of p: The credible interval of p is a probability that p lies in  interval 
21. A two-sided % credible interval with an equal probability in each tail area would 

comprise , where  and  . 

After the inclusion of j patients the width of the credible interval of the response probability is 

denoted as . In the case of the beta distribution this interval can be calculated from the 

incomplete beta function  where .  

 

 
Predictive distribution: A Bayesian approach allows predicting some future observations on 

the basis of currently observed data. At an interim stage, suppose that we observed s 

responses from the first n observations and the posterior distribution for p is updated, which is 

. Using a beta-binomial model, the predictive probability of observed k 

responses from m future observations is defined by: 

 

where  and . The predictive distribution is used in trial decision 

making such as stopping rules (section 2.3), whether or not to conduct future trials 22. 

 

Sample size determination rules 

Rule 1: Select  so that the posterior probability  is bigger than , where 

 is a desired coverage probability,  is a desired credible interval width.  is a 

hypothetical number of responses out of the N patients, where  is the nearest integer to 

 and  is a maximal response probability threshold. 

Rule 2: Select  so that the probability  is bigger than  , where  is a 

specified power criterion, usually within the range of [0.8, 0.9].  is a hypothetical number 

of responses out of the N patients, where  is the nearest integer to  and  is 

a maximal response probability threshold and  is a selected small value, usually within the 

range of [0, 0.1].  
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Stopping rules 

Rule 1:  where  is a maximal response probability threshold, fixed 

before beginning the trial by investigators and  is arbitrarily chosen by statisticians, usually 

within the range of [0.8,1]. 

Rule 2:  where  is a minimal response probability threshold, fixed 

before beginning the trial by investigators and  is arbitrarily chosen by statisticians, usually 

within the range of [0.8,1]. 

Rule 3:  where K is the number of responses from m future 

observations, s+lmax would mean a maximal response number threshold which could be 

nearly equal to  , and  is arbitrarily chosen by statisticians, usually within the range 

of [0.8,1]. The values of lmax and m are determined with clinicians in function of the number 

of remaining additional patients to be included in the trial at the time of the interim analysis. 

Rule 4:  where K is the number of responses from m future 

observations, s+lmin would mean a minimal response number threshold, which could be 

nearly equal to  and  is arbitrarily chosen by statisticians, usually within the range of 

[0.8,1]. The value of lmin and m are also determined with clinicians in function of the number 

of remaining additional patients to be included in the trial at the time of the interim analysis. 

Rule 5:  where is arbitrarily chosen by statisticians, usually 

within the range of [0.02,0.15]. 
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Figure 1: Stopping boundary for the DST trial. 
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Table 1. Operating characteristics from simulations for the DST trial. 
 
Stopping 
boundary: t3, t4 

True response 
probability 

P- P+ 1-(P- + P+) Expected 
sample size 

0.95, 0.95 0.55 (minimal) 0.553 0.026 0.421 29.4 
 0.75 (maximal) 0.005 0.644 0.351 29.6 
0.90, 0.90 0.55 0.574 0.037 0.389 27.4 
 0.75 0.010 0.659 0.331 27.4 
0.85, 0.85 0.55 0.590 0.043 0.367 25.1 
 0.75 0.029 0.685 0.286 24.6 
0.80, 0.80 0.55 0.611 0.045 0.344 23.9 
 0.75 0.033 0.693 0.274 23.7 

 
P-: probability of early stopping due to inefficacy 
P+: probability of early stopping due to efficacy 
1-(P- + P+): probability of the trial being inconclusive (neither efficacious nor inefficacious) 



Figure 2: Prior and posterior distributions of the response probability at the end in either the 
MM or the APL trial. The dashed vertical lines represent the estimation of the mean response 
probabilities. 
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Table 2: Sequential estimations of the mean posterior response probabilities after the 
inclusion of each new patient in either the MM or the APL trial. 
 

MM APL 
  Mean prior response 

probability 
  Mean prior response 

probability 
  0.100   0.300 
Patient Response* Mean posterior 

response probability 
Patient Response Mean posterior 

response probability 
1 0 0.075 1 0 0.273 
2 0 0.060 2 1 0.333 
3 0 0.050 3 0 0.308 
4 0 0.043 4 0 0.286 
5 0 0.038 5 1 0.333 
6 0 0.033 6 1 0.375 
7 0 0.030 7 1 0.412 
8 0 0.027 8 1 0.444 
9 0 0.025 9 0 0.421 
10 0 0.023 10 1 0.450 
11 0 0.021 11 1 0.476 
12 0 0.020 12 1 0.500 
   13 0 0.478 
   14 1 0.500 
   15 1 0.520 
   16 1 0.538 
   17 1 0.556 
   18 1 0.571 
   19 1 0.586 
   20 1 0.600 

* 0=Failure and 1=Success 



Figure 3: Sequential computation of the stopping rules of the MM and the APL trial. 
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