G. A. Lancaster, S. Dodd, and P. R. Williamson, Design and analysis of pilot studies: recommendations for good practice, J Eval Clin Pract, vol.10, pp.307-312, 2004.

D. M. Arnold, K. Burns, and N. Adhikari, The design and interpretation of pilot trials in clinical research in critical care, Crit Care Med, vol.37, pp.69-74, 2009.

M. Arain, M. J. Campbell, and C. L. Cooper, What is a pilot or feasibility study? A review of current practice and editorial policy, BMC Med Res Methodol, vol.10, p.67, 2010.

L. Thabane, J. Ma, and R. Chu, A tutorial on pilot studies: the what, why and how, BMC Med Res Methodol, vol.10, p.1, 2010.

S. J. Pocock, Clinical trials: a practical approach, 1983.

S. A. Julious, Sample sizes for clinical trials, 2008.

, Guideline on clinical trials in small populations, European Medicines Agency CHMP/EWP/83561/2005, p.29, 2006.

, Concept paper on extrapolation of efficacy and safety in medicine development, European Medicines Agency EMA, 2012.

. Institute-of-medicine, Small clinical trials: issues and challenges, p.29, 2001.

P. G. Casali, P. Bruzzi, and J. Bogaerts, Rare Cancers Europe (RCE) methodological recommendations for clinical studies in rare cancers: a European consensus position paper, Ann Oncol, vol.26, issue.2, pp.300-306, 2015.

M. Degroot, Optimal statistical decisions, 1970.

H. Raiffa and R. Schlaifer, Applied statistical decision theory, 1977.

J. Q. Smith, Decision analysis: a Bayesian approach, 1988.

D. V. Lindley, The choice of sample size, J Royal Stat Soc: Ser D (The Statistician), vol.46, pp.129-138, 1997.

A. E. Brockwell and J. B. Kadane, A gridding method for Bayesian sequential decision problems, J Computat Graphic Statist, vol.12, pp.566-584, 2003.

J. Kadane and P. Vlachos, Hybrid methods for calculating optimal few-stage sequential strategies: Data monitoring for a clinical trial, Stat Comput, vol.12, pp.147-152, 2002.

A. Banerjee and A. A. Tsiatis, Adaptive two-stage designs in phase II clinical trials, Stat Med, vol.25, pp.3382-3395, 2006.

H. C. Brunier and J. Whitehead, Sample sizes for phase II clinical trials derived from Bayesian decision theory, Stat Med, vol.13, pp.2493-2502, 1994.

C. Chen and R. A. Beckman, Optimal cost-effective designs of phase II proof of concept trials and associated go-no go decisions, J Biopharm Stat, vol.19, pp.424-436, 2009.

C. Chen, L. Sun, and C. L. Li, Evaluation of early efficacy endpoints for proof-of-concept trials, J Biopharm Stat, vol.23, pp.413-424, 2013.

Y. Chen and B. J. Smith, Adaptive group sequential design for phase II clinical trials: A Bayesian decision theoretic approach, Stat Med, vol.28, pp.3347-3362, 2009.

M. Ding, G. L. Rosner, and P. Mu¨ller, Bayesian optimal design for phase II screening trials, Biometrics, vol.64, pp.886-894, 2008.

H. Sw and N. Stallard, Designing a series of decisiontheoretic phase II trials in a small population, Stat Med, vol.31, pp.4337-4351, 2012.

S. H. Jung, T. Lee, and K. M. Kim, Admissible two-stage designs for phase II cancer clinical trials, Stat Med, vol.23, pp.561-569, 2004.

T. L. Lai, O. Liao, and R. G. Zhu, Adaptation in clinical development plans and adaptive clinical trial designs, Statist Interf, vol.5, pp.431-442, 2012.

R. M. Nixon, A. O'hagan, and J. Oakley, The rheumatoid arthritis drug development model: A case study in Bayesian clinical trial simulation, Pharm Stat, vol.8, pp.371-389, 2009.

A. Pallay, A decision analytic approach to a futility analysis of a phase II pharmaceutical study, J Biopharm Stat, vol.11, pp.209-225, 2001.

C. R. Palmer, A comparative phase II clinical trials procedure for choosing the best of three treatments, Stat Med, vol.10, pp.1327-1340, 1991.

D. Rossell, P. Mu¨ller, and G. L. Rosner, Screening designs for drug development, Biostatistics, vol.8, pp.595-608, 2007.

N. Stallard, Approximately optimal designs for phase II clinical studies, J Biopharm Stat, vol.8, pp.469-487, 1998.

N. Stallard, Sample size determination for phase II clinical trials based on Bayesian decision theory, Biometrics, vol.54, pp.279-294, 1998.

N. Stallard, Decision-theoretic designs for phase II clinical trials allowing for competing studies, Biometrics, vol.59, pp.402-409, 2003.

N. Stallard, Optimal sample sizes for phase II clinical trials and pilot studies, Stat Med, vol.31, pp.1031-1042, 2012.

N. Stallard, M. Posch, and T. Friede, Optimal choice of the number of treatments to be included in a clinical trial, Stat Med, vol.28, pp.1321-1338, 2009.

N. Stallard and P. F. Thall, Decision-theoretic designs for pre-phase II screening trials in oncology, Biometrics, vol.57, pp.1089-1095, 2001.

N. Stallard, P. F. Thall, and J. Whitehead, Decision theoretic designs for phase II clinical trials with multiple outcomes, Biometrics, vol.55, pp.971-977, 1999.

M. Staquet and R. Sylvester, A decision theory approach to phase II clinical trials, Biomedicine, vol.26, pp.262-266, 1977.

R. J. Sylvester, A Bayesian approach to the design of phase II clinical trials, Biometrics, vol.44, pp.823-836, 1988.

R. J. Sylvester and M. J. Staquet, Design of phase II clinical trials in cancer using decision theory, Cancer Treat Rep, vol.64, pp.519-524, 1980.

P. F. Thall, H. Q. Nguyen, and T. M. Braun, Using joint utilities of the times to response and toxicity to adaptively optimize schedule-dose regimes, Biometrics, vol.69, pp.673-682, 2013.

L. Trippa, G. L. Rosner, and P. Mu¨ller, Bayesian enrichment strategies for randomized discontinuation trials, Biometrics, vol.68, pp.203-211, 2012.

L. Zhao, J. M. Taylor, and S. M. Schuetze, Bayesian decision theoretic two-stage design in phase II clinical trials with survival endpoint, Stat Med, vol.31, pp.1804-1820, 2012.

L. Zhao and G. Woodworth, Bayesian decision sequential analysis with survival endpoint in phase II clinical trials, Stat Med, vol.28, pp.1339-1352, 2009.

B. Da and C. H. Ho, One-sided sequential stopping boundaries for clinical trials: A decision-theoretic approach, Biometrics, vol.44, pp.219-227, 1988.

M. H. Chen and A. R. Willan, Determining optimal sample sizes for multistage adaptive randomized clinical trials from an industry perspective using value of information methods, Clin Trials, vol.10, pp.54-62, 2013.

Y. Cheng and D. A. Berry, Optimal adaptive randomized designs for clinical trials, Biometrika, vol.94, pp.673-687, 2007.

Y. Cheng and Y. Shen, Bayesian adaptive designs for clinical trials, Biometrika, vol.92, pp.633-646, 2005.

Y. Cheng and Y. Shen, An efficient sequential design of clinical trials, J Stat Plan Inference, vol.143, pp.283-295, 2013.

Y. Cheng, S. F. Berry, and D. A. , Choosing sample size for a clinical trial using decision analysis, Biometrika, vol.90, pp.923-936, 2003.

H. Chernoff and A. J. Petkau, Sequential medical trials involving paired data, Biometrika, vol.68, pp.119-132, 1981.

K. Claxton and J. Posnett, An economic approach to clinical trial design and research priority-setting, Health Econ, vol.5, pp.513-524, 1996.

K. Claxton and K. M. Thompson, A dynamic programming approach to the efficient design of clinical trials, J Health Econ, vol.20, pp.797-822, 2001.

S. Eckermann and A. R. Willan, Expected value of information and decision making in HTA, Health Econ, vol.16, pp.195-209, 2007.

J. Gittins and H. Pezeshk, How large should a clinical trial be?, J Royal Stati Soc: Ser D (The Statistician), vol.49, pp.177-187, 2000.

J. Gittins and H. Pezeshk, A behavioral Bayes method for determining the size of a clinical trial, Drug Inf J, vol.34, pp.355-363, 2000.

J. C. Gittins and H. Pezeshk, A decision theoretic approach to sample size determination in clinical trials, J Biopharm Stat, vol.12, pp.535-551, 2002.

J. Halpern, . Brown, . Bw, and J. Hornberger, The sample size for a clinical trial: A Bayesian-decision theoretic approach, Stat Med, vol.20, pp.841-858, 2001.

D. F. Heitjan, P. S. Houts, and H. A. Harvey, A decisiontheoretic evaluation of early stopping rules, Stat Med, vol.11, pp.673-683, 1992.

J. Hornberger and P. Eghtesady, The cost-benefit of a randomized trial to a health care organization, Control Clin Trials, vol.19, pp.198-211, 1998.

C. Jennison and B. W. Turnbull, Interim monitoring of clinical trials: Decision theory, dynamic programming and optimal stopping, Kuwait J Sci, vol.40, pp.43-59, 2013.

F. Jiang, J. J. Lee, and P. Mu¨ller, A Bayesian decisiontheoretic sequential response-adaptive randomization design, Stat Med, vol.32, pp.1975-1994, 2013.

T. Kikuchi and J. Gittins, A behavioral Bayes method to determine the sample size of a clinical trial considering efficacy and safety, Stat Med, vol.28, pp.2293-2306, 2009.

T. Kikuchi and J. Gittins, A behavioural Bayes approach to the determination of sample size for clinical trials considering efficacy nd safety: Imbalanced sample size in treatment groups, Stat Methods Med Res, vol.20, pp.389-400, 2011.

T. Kikuchi, H. Pezeshk, and J. Gittins, A Bayesian costbenefit approach to the determination of sample size in clinical trials, Stat Med, vol.27, pp.68-82, 2008.

R. J. Lewis and D. A. Berry, Group sequential clinical trials: A classical evaluation of Bayesian decision-theoretic designs, J Am Stat Assoc, vol.89, pp.1528-1534, 1994.

R. J. Lewis, A. M. Lipsky, and D. A. Berry, Bayesian decisiontheoretic group sequential clinical trial design based on a quadratic loss function: A frequentist evaluation, Clin Trial, vol.4, pp.5-14, 2007.

V. Maroufy, P. Marriott, and H. Pezeshk, An optimization approach to calculating sample sizes with binary responses, J Biopharm Stat, vol.24, pp.715-731, 2014.

C. R. Mehta and N. R. Patel, Adaptive, group sequential and decision theoretic approaches to sample size determination, Stat Med, vol.25, pp.3250-3269, 2006.

L. A. Orawo and J. A. Christen, Bayesian sequential analysis for multiple-arm clinical trials, Stat Comput, vol.19, pp.99-109, 2009.

P. Nr and S. Ankolekar, A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs, Stat Med, vol.26, pp.4976-4988, 2007.

N. R. Patel, S. Ankolekar, and Z. Antonijevic, A mathematical model for maximizing the value of phase 3 drug development portfolios incorporating budget constraints and risk, Stat Med, vol.32, pp.1763-1777, 2013.

H. Pezeshk and J. Gittins, A fully Bayesian approach to calculating sample sizes for clinical trials with binary responses, Drug Inf J, vol.36, pp.143-150, 2002.

H. Pezeshk, N. Nematollahi, and V. Maroufy, The choice of sample size: A mixed Bayesian/frequentist approach, Stat Meth Med Res, vol.18, pp.183-194, 2009.

H. Pezeshk, N. Nematollahi, and V. Maroufy, Bayesian sample size calculation for estimation of the difference between two binomial proportions, Stat Meth Med Res, vol.22, pp.598-611, 2013.

Y. G. Wang, Gittins indices and constrained allocation in clinical trials, Biometrika, vol.78, pp.101-111, 1991.

J. K. Wathen and J. A. Christen, Implementation of backward induction for sequentially adaptive clinical trials, J Computat Graphic Stat, vol.15, pp.398-413, 2006.

J. K. Wathen and P. F. Thall, Bayesian adaptive model selection for optimizing group sequential clinical trials, Stat Med, vol.27, pp.5586-5604, 2008.

A. R. Willan, Optimal sample size determinations from an industry perspective based on the expected value of information, Clin Trial, vol.5, pp.587-594, 2008.

A. R. Willan and S. Eckermann, Optimal clinical trial design using value of information methods with imperfect implementation, Health Econ, vol.19, pp.549-561, 2010.

A. R. Willan and S. Eckermann, Value of information and pricing new healthcare interventions, Pharmacoeconomics, vol.30, pp.447-459, 2012.

A. R. Willan and M. Kowgier, Determining optimal sample sizes for multi-stage randomized clinical trials using value of information methods, Clin Trial, vol.5, pp.289-300, 2008.

A. R. Willan and E. M. Pinto, The value of information and optimal clinical trial design, Stat Med, vol.24, pp.1791-1806, 2005.

R. Simon, Optimal two-stage designs for phase II clinical trials, Control Clin Trials, vol.10, pp.1-10, 1989.

A. O'hagan and J. W. Stevens, Bayesian assessment of sample size for clinical trials of cost-effectiveness, Med Decis Making, vol.21, pp.219-230, 2001.

A. C. Graf, M. Posch, and F. Koenig, Adaptive designs for subpopulation analysis optimizing utility functions, Biometric J, vol.57, pp.76-89, 2015.

N. Simon and R. Simon, Adaptive enrichment designs for clinical trials, Biostatistics, vol.14, pp.613-625, 2013.

S. Wang, H. Hmj, and O. Rt, Adaptive patient enrichment designs in therapeutic trials, Biometric J, vol.51, pp.358-374, 2009.

Y. K. Cheung, Dose finding by the continual reassessment method, 2011.

R. J. Simes, Application of statistical decision theory to treatment choices: implications for the design and analysis of clinical trials, Stat Med, vol.5, pp.411-420, 1986.

A. P. Grieve and M. Krams, ASTIN: A Bayesian adaptive dose-response trial in acute stroke, Clin Trial, vol.2, pp.340-351, 2005.

B. Da and B. Fristedt, Bandit problems: sequential allocation of experiments, 1985.

J. Gittins, Multi-armed bandit allocation indices, 1989.

J. C. Gittins, W. R. Glazebrook, and K. D. , Multi-armed bandit allocation indices, 2011.

K. Chaloner, T. Church, and T. A. Louis, Graphical elicitation of a prior distribution for a clinical trial, J Royal Stat Soc Ser D (The Statistician), vol.42, pp.341-353, 1993.

J. Kadane and L. J. Wolfson, Experiences in elicitation, J Royal Stat Soc: Series D (The Statistician), vol.47, pp.3-19, 1998.

A. O'hagan, Eliciting expert beliefs in substantial practical applications, J Royal Stat Soc: Ser D (The Statistician), vol.47, pp.21-35, 1998.

T. Blanck, T. J. Conahan, and R. G. Merin, Bayesian methods and ethics in a clinical trial design, pp.159-162, 1996.

N. Kinnersley and S. Day, Structured approach to the elicitation of expert beliefs for a Bayesian-designed clinical trial: a case study, Pharm Stat, vol.12, pp.104-113, 2013.

G. Parmigiani and L. Inoue, Decision theory: principles and approaches, 2009.

D. V. Lindley, Making decisions, 1971.

L. J. Emrich and N. Sedransk, Whether to participate in a clinical trial: The patient's view, pp.267-305, 1996.