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The problem of choosing a sample size for a clinical trial is a very common one. In some settings,
such as rare diseases or other small populations, the large sample sizes usually associated with the
standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect
the size of the population under consideration. Incorporation of the population size is possible in a
decision-theoretic approach either explicitly by assuming that the population size is fixed and known,
or implicitly through geometric discounting of the gain from future patients reflecting the expected
population size. This paper develops such approaches. Building on previous work, an asymptotic
expression is derived for the sample size for single and two-arm clinical trials in the general case of a
clinical trial with a primary endpoint with a distribution of one parameter exponential family form that
optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this
parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric
discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained
from the asymptotic expression is also compared with the exact optimal sample size in examples with
responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can
also be reasonable in relatively small sample sizes.

Keywords: Bayesian; Clinical trial design; Decision theory; Exponential family form;
Optimal sample size.

� Additional supporting information may be found in the online version of this article
at the publisher’s web-site

1 Introduction

The problem of determining the sample size for a clinical trial is a very common one. For large-scale
definitive phase III clinical trials, a frequentist approach is usually adopted, with the sample size
chosen so as to control the type I error rate at a specified level, α, and to give specified power 1 − β, to
detect some appropriately chosen size of treatment effect (see, e.g. Pocock, 1983, for details). Choice
of α = 0.05 and β = 0.1 or 0.2 is typical.
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The sample sizes obtained using the frequentist approach do not always seem appropriate. In
particular they do not reflect the size of the population to which the results of the trial apply. The
population size is relevant, however, when considering decisions made on the basis of trial results. This
is particularly true for clinical trials conducted in rare diseases or other small populations, when the
population size means that a large trial would be infeasible, or even impossible.

One way in which the size of the population can influence the sample size is to use a decision
theoretic approach in which the benefits to future patients in the population, sometimes called the
“patient horizon”, are explicitly considered so that future benefit depends on the size of this population.
Such an approach has been proposed and discussed by numerous authors over the last 50 years (see,
e.g. Anscombe, 1963; Colton, 1963; Sylvester, 1988; Berry et al., 1994; Cheng et al., 2003; Kikuchi and
Gittins, 2009 and reviews by Pezeshk et al., 2013; Hee et al., 2016). Although this approach has very
rarely been implemented in practice, it can nevertheless provide important insight into an appropriate
choice of sample size for a clinical trial.

The role of the population size in determination of the optimal sample size for a clinical trial has
been considered by Cheng et al. (2003). They considered single-arm and two-arm clinical trials with a
primary endpoint following a Bernoulli distribution indicating either success or failure of treatment for
each patient. Adopting a decision-theoretic approach, they obtained designs that maximize the total
number of successes. Denoting the population size by N, they show that asymptotically as N → ∞,
the optimal sample size for a clinical trial is O(N1/2) and give an expression for the asymptotically
optimal sample size that depends on the prior distributions for the unknown probability of success for
each trial arm.

In this paper, we extend the work of Cheng et al. (2003), both to more general distributional forms for
the primary endpoint and to situations in which the aim is to maximize some general utility expressed
as a function of a parameter of these distributions. We show that the result that the optimal sample
size is O(N1/2) applies for any continuous utility function and for responses with a distribution of
any one-parameter exponential family form assuming a conjugate prior distribution. We also consider
the case where no finite patient horizon is assumed, but gains from future patients are geometrically
discounted, that is the gain from the jth patient is multiplied by λ j−1 for some discounting parameter,
λ < 1 (Berry and Fristedt, 1985). As considered in the discussion section, the size of λ can also reflect
the size of the patient population in this setting, via an effective number of patients, (1 − λ)−1, which
will be denoted N∗. We show that in this case as λ → 1 so that N∗ is large, the optimal sample
size is O(N∗1/2). We also investigate through exact calculation the small-sample accuracy of the the
large sample approximations. Although the results obtained depend on asymptotics, we show that,
depending on the exact form of the utility function chosen, these may be reasonable even for extremely
rare diseases, for example for patient populations of 1000 or less when the optimal sample size can be
less than 50.

2 Detailed problem description and notation

2.1 Outline of the decision problem

Suppose that a clinical trial is to be conducted to choose between two treatments with n1 and n2
patients receiving treatment 1 and treatment 2, respectively, where treatment 2 may be the current
standard treatment included as a control. Note that taking n2 = 0 corresponds to a single-arm trial,
though the decision to be taken at the end of such a trial remains comparative, with a choice being
made regarding treatment of future patients.

It is assumed that the gain associated with treatment of patients in the trial or patients outside the
trial who receive each treatment can be specified as a function of a parameter of the distribution for the
response for patients receiving that treatment. It is noted that here “gain” is to be interpreted widely
to include any kind of costs, losses, gains, or benefits associated with treatment. Following the trial,
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the most preferable treatment, that is the treatment for which the posterior expected gain given the
observed data, is highest, will be selected. The remaining patients will then receive this treatment. We
wish to determine the optimal values, n∗

1 and n∗
2, of the sample sizes n1 and n2 and to determine how

n∗
1 and n∗

2 depend on the population size.

2.2 Decision problem formulation and notation

We will assume that responses for patients follow some distribution of natural one-parameter expo-
nential family form. In detail, let Yi j denote the response for patient j receiving treatment i and assume
Yi1, . . . ,Yini

are i.i.d. with density fi(y | ψi) = ai(y) exp(yψi − bi(ψi)) for some ai(y) and bi(ψi). Typ-
ically responses from patients in the two treatment groups will follow distributions of the same form,
that is functions ai and bi will not depend on i, with ψ1 and ψ2 differing, though this is not assumed.
We will assume that ψ1 and ψ2 are taken to have independent prior distributions of conjugate form,
that is with ψi having density πi(ψi | n0i, y0i) = ci(n0i, y0i) exp(n0iy0iψi − n0ibi(ψi)) for some y0i and
n0i and normalising constant ci(n0i, y0i), i = 1, 2. The values y0i and n0i can be interpreted respectively
as the prior mean of ξi = b′

i(ψi) = E (Yi j ) and the number of observations to which the prior infor-
mation is equivalent, so that following a trial with ni patients receiving treatment and observation of
Y = (Y11, . . . ,Y1n1

,Y21, . . . ,Y2n2
), the posterior mean for ξi given Y is equal to

n0iy0i + niȲi

n0i + ni
, i = 1, 2 (1)

with Ȳi = ∑ni
j=1 Yi j/ni (see Bernado and Smith, 2000).

Suppose that the expected gain from a patient receiving treatment i in the trial is hi(ξi), and that
the expected gain to a future patient receiving treatment i is gi(ξi) where hi and gi, i = 1, 2 are such
that the expected values E0(hi(ξi)), E0(gi(ξi)) and E0(maxi=1,2(gi(ξi))) where E0 denotes the expected
value taken over the prior distribution of ξ , exist and hi and gi are assumed to be differentiable with gi
strictly increasing and with finite derivative. Assume further that

E0(hi(ξi)) ≤ E0(max{g1(ξ1), g2(ξ2)}), i = 1, 2. (2)

This ensures that the gain from treating patients in the trial cannot exceed that from treating them
outside the trial. This is considered further in the discussion section below.

We will consider two cases. In the first, the population is considered to be finite with known size,
N. The number of patients treated following the trial is thus N − n1 − n2. In the second case, no finite
population size is assumed, but the gain from future patients is geometrically discounted, so that the
gain from patient j if they receive treatment i is λ j−1hi(ξi) if they are included in the trial and λ j−1gi(ξi)

if they are treated following the trial, for some λ < 1.
The geometric discounting of gains from future patients can be interpreted in a number of ways.

One interpretation is that gains further in the future are reduced to reflect either opportunity loss or
loss of financial interest on an investment (see, e.g. Fergusson, 2008). With this interpretation it might
be appropriate to take λ < 1 and N finite. An alternative interpretation is to imagine that gain from
each future patient is of constant value, as is assumed in the finite horizon case, but that the size of the
population, N, rather than being fixed in advance, is random, following a geometric distribution. This
could be the case if, for example, the population is limited by some new treatment becoming available at
which point the trial, or use of the recommended treatment following the trial, will be terminated, with
the probability of this event constant over time (see Berry and Fristedt, 1985). In this interpretation
N∗ = (1 − λ)−1 is the expected population size prior to this new treatment becoming available. The
size of λ and the resulting N∗ can thus reflect the population size, and in some ways a smaller value
of λ, corresponding to fewer patients being available prior to the new treatment becoming available,
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more reasonably models a small population than assuming the number of patients has some fixed and
known value, N.

3 Determination of the optimal sample size

3.1 Finite patient horizon case

Consider first the setting of a finite patient horizon of size N. Following observation of data Y =
(Y11, . . . ,Y1n1

,Y21, . . . ,Y2n2
), the total expected gain if treatment i is recommended for all fur-

ther N − n1 − n2 patients is n1Eξ |Y(h1(ξ1) | Y) + n2(Eξ |Y(h2(ξ2) | Y) + (N − n1 − n2)Eξ |Y(gi(ξi) | Y)

where Eξ |Y(. | Y) denotes the expected value taken over the posterior distribution of ξ given Y.
The optimal action at the end of the trial is thus to select the treatment with the largest value

of Eξ |Y(gi(ξi) | Y) and the expected gain assuming this action is taken is equal to n1Eξ |Y(h1(ξ1) |
Y) + n2Eξ |Y(h2(ξ2) | Y) + (N − n1 − n2) maxi=1,2 Eξ |Y(gi(ξi) | Y).

Since, prior to the commencement of the trial, Y is unknown, the expected gain from the trial is
equal to E0(G) where the expectation is taken over the prior distribution for ξ1 and ξ2 and G is the
function of ξ1, ξ2, N, n1, and n2 given by

G = n1EY

(
Eξ |Y

(
h1

(
ξ1

) | Y
)) + n2EY

(
Eξ |Y

(
h2

(
ξ2

) | Y
)) +

+(
N − n1 − n2

)
EY

(
max
i=1,2

Eξ |Y
(
gi

(
ξi

) | Y
))

(3)

where EY denotes the expectation taken over Y for a given value of ξ1 and ξ2 so that expectations are
taken first over the posterior distributions of ξi given Y and then over Y given ξ1 and ξ2.

Since E0(EY(Eξ |Y(hi(ξi) | Y))) is equal to the prior expectation E (hi(ξi)) for any function hi for
which the expectations exist, we get

E0(G) = n1E0(h1(ξ1)) + n2E0(h2(ξ2)) + (N − n1 − n2)E0(EY(max
i=1,2

Eξ |Y(gi(ξi) | Y))). (4)

We wish to find the optimal values of n1 and n2, that is the values for which E0(G) is maximized. For
small N, when the optimal sample sizes, n∗

1 and n∗
2 will also be small, it may be feasible to evaluate the

prior expected gain given by (4) directly, taking the expectation over the prior predictive distribution
for Y and to find n∗

1 and n∗
2 by a numerical search. For larger N, such an approach may be infeasible.

In this case asymptotic expressions for the optimal sample sizes, n∗
1 and n∗

2, as the population size, N,
becomes large are more useful.

For finite n01 and n02, the expectation E0(EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))) is increasing in n1 and
n2. Thus for N > n1 − n2, (N − n1 − n2)E0(EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))) and hence E0(G) is also
increasing in n1 and n2. Thus as N → ∞ the optimal trial design has both (n01 + n1) → ∞ and
(n02 + n2) → ∞. The case in which both n01 and n02 are both infinite corresponds to both ξ1 and ξ2
being known a priori. We will therefore consider the case in which, without loss of generality, n01 is
finite, and derive the optimal value n∗

1.
Note that as N → ∞, so that the optimal n01 + n1 and n02 + n2 also approach infinity,

E0(EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))) → maxi=1,2 E0(gi(ξi)) so that the optimal sample sizes are such that
ni/N → 0, i = 1, 2.

C© 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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By the central limit theorem we have Ȳi
d→ N(ξi, vi(ξi)/ni) where vi(ξi) denotes the variance of Yi j .

Thus from (1), applying the delta method since gi is assumed to be differentiable and strictly increasing
so that the derivative, g′

i(ξi), is non-zero, we get

Eξ |Y(gi(ξi) | Ȳi)
d→ N

(
gi

(
n0iy0i + niξi

n0i + ni

)
,

(
ni

n0i + ni

)2 (
g′

i(ξi)
)2 vi(ξi)

ni

)
. (5)

Using an expression for the expected value of the maximum of two normally distributed random
variables given by Clark (1961), we have

EY

(
max
i=1,2

Eξ |Y(gi(ξi) | Y)

)
→ ξ̃1�(δ) + ξ̃2�(−δ) + aφ(δ) (6)

where ξ̃i = gi((n0iy0i + niξi)/(n0i + ni)), a2 = ∑2
i=1 n2

i (g
′
i(ξi))

2vi(ξi)/ni(n0i + ni)
2, δ = (ξ̃1 − ξ̃2)/a and

φ and � denote standard normal density and distribution functions. Thus

E0(G) → n1E0(h1(ξ1)) + n2E0(h2(ξ2)) + (N − n1 − n2)E0(ξ̃1�(δ) + ξ̃2�(−δ) + aφ(δ)).

(7)

In order to find n∗
1, we obtain the derivative ∂E0(G)/∂n1 = E0(∂G/∂n1). From (3),

∂G
∂n1

= h1(ξ1) − EY

(
max
i=1,2

Eξ |Y(gi(ξi) | Y)

)
+ (N − n1 − n2)

∂EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))

∂n1
.

(8)

We will thus find a large-sample approximation for this derivative.
Equation (6) gives an approximation for EY(maxi=1,2 Eξ |Y(gi(ξi) | Y)). The derivative of the right

hand side of (6) is equal to

�(δ)
g′

1(ξ1)n01(ξi − y01)

(n01 + n1)
2

+ φ(δ)
(n01 − n1)v1(ξ1)

(
g′

i(ξi)
)2

2a(n01 + n1)
3

(see Web Appendix A for details), so that ∂G/∂n1 can be approximated by

h1(ξ1) − EY(max
i=1,2

Eξ |Y(gi(ξi) | Y)) +

+(N − n1 − n2)

(
�(δ)

g′
1(ξ1)n01(ξi − y01)

(n01 + n1)
2

+ φ(δ)
(n01 − n1)v1(ξ1)

(
g′

i(ξi)
)2

2a(n01 + n1)
3

)
.

The limit of this as N, n1 and n02 + n2 all approach infinity with n1/N and n2/N approaching 0
(again, see Web Appendix A for details), has expected value

E0(h1(ξ1) − max
i=1,2

gi(ξi)) + N
n2

1

∫
−v1(g

−1
1 (g2(ξ2)))

2

(
g′

1(g
−1
1 (g2(ξ2)))

)
π(g−1

1 (g2(ξ2)), ξ2)dξ2

(9)

where π(ξ1, ξ2) denotes the joint prior distribution of ξ1 and ξ2.
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Setting this to zero and solving for n1, the maximum expected gain is found to be at

n∗
1 =

√
N

∫
v1(g

−1
1 (g2(ξ2)))g

′
1(g

−1
1 (g2(ξ2)))π(g−1

1 (g2(ξ2)), ξ2)dξ2

2(E0(maxi=1,2 gi(ξi)) − E0(h1(ξ1)))
. (10)

Note that the fact that g1 is increasing and the requirement (2) ensures that both numerator and
denominator are positive so that the square root exists. It is also interesting to note that the asymptotic
optimal sample size for arm 1, n1, does not depend on n2 since we have assumed either that n02 is
infinite or that n2 also approaches infinity.

When n02 is finite, by symmetry, the optimal value of n2 is given by

n∗
2 =

√
N

∫
v2(g

−1
2 (g1(ξ1)))g

′
2(g

−1
2 (g1(ξ1)))π(ξ1, g−1

2 (g1(ξ1)))dξ1

2(E0(maxi=1,2 gi(ξi)) − E0(h2(ξ2)))
. (11)

When n02 = ∞, the prior distribution has mass at ξ2 = y02 only, and so may be written as a univariate
density π(ξ1), so that the optimal value of n1 becomes

n∗
1 =

√
Nv1(g

−1
1 (g2(y02)))g

′
1(g

−1
1 (g2(y02)))π(g−1

1 (g2(y02)))

2(E0(maxi=1,2 gi(ξi)) − E0(h1(ξ1)))
. (12)

As n02 → ∞, ∂EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))/∂n2 → 0. Thus from an expression similar to (8) giving
the derivative with respect to n2 and (2), the derivative is negative and n∗

2 = 0.
When g1 and g2 are identical, (10) becomes

n∗
1 =

√
N

∫
v1(ξ2)g

′
1(ξ2)π(ξ2, ξ2)dξ2

2(E0(maxi=1,2 gi(ξi)) − E0(h1(ξ1)))
.

and when gi(ξi) = hi(ξi) = ξi, i = 1, 2, this becomes

n∗
1 =

√
N

∫
v1(ξ2)π(ξ2, ξ2)dξ2

2(E0(maxi=1,2 ξi) − E0(ξ1))

showing that this is a generalization of the expression obtained by Cheng et al. (2003) for the case in
which Yi j has a Bernoulli distribution with parameter ξi and vi(ξi) = ξi(1 − ξi).

3.2 Geometric discounting case

Consider next the second setting introduced above; that of an infinite population with geometric
discounting.

In a two-arm trial it is assumed that n1 and n2 are sufficiently large and randomisation to treatments
1 and 2 sufficiently balanced that the gain to patients receiving treatment i in the trial can be taken to
be ni

∑n1+n2
j=1 λ j−1/(n1 + n2)hi(ξi). The total expected gain if treatment i is recommended for all further

N − n1 − n2 patients is then

n1

n1 + n2

n1+n2∑
j=1

λ j−1Eξ |Y(h1(ξ1) | Y) + n2

n1 + n2

n1+n2∑
j=1

λ j−1Eξ |Y(h2(ξ2) | Y) +

+
∞∑

j=n1+n2+1

λ j−1Eξ |Y(gi(ξi) | Y).

C© 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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The optimal action at the end of the trial is thus again to treat all future patients with the treatment
with the largest value of Eξ |Y(gi(ξi) | Y) and the expected gain assuming this action is taken is equal
to

n1

n1 + n2

n1+n2∑
j=1

λ j−1Eξ |Y(h1(ξ1) | Y) + n2

n1 + n2

n1+n2∑
j=1

λ j−1Eξ |Y(h2(ξ2) | Y) +

+
∞∑

j=n1+n2+1

λ j−1 max
i=1,2

Eξ |Y(gi(ξi) | Y).

The prior predicted expected utility for a trial with ni patients receiving treatment i is thus

n1

n1 + n2

n1+n2∑
j=1

λ j−1E0(h1(ξ1)) + n2

n1 + n2

n1+n2∑
j=1

λ j−1E0(h2(ξ2)) +

+
∞∑

j=n1+n2+1

λ j−1E0

(
EY

(
max
i=1,2

Eξ |Y(gi(ξi) | Y)

))
. (13)

Optimal sample sizes, n∗
1 and n∗

2, can be found directly using this expression and a numerical search
in cases when this is computationally feasible.

As above, it is of interest to seek asymptotic approximations to n∗
1 and n∗

2, in this case as the geometric
discounting parameter, λ, approaches 1 from below. We will again assume that n01 is finite and obtain
first an approximation for n∗

1.
The derivatives of

∑n1+n2
j=1 λ j−1 = (1 − λn1+n2 )/(1 − λ) and

∑∞
j=n1+n2+1 λ j−1 = λn1+n2/(1 − λ) with

respect to n1 are respectively −λn1+n2 log λ/(1 − λ) and λn1+n2+1 log λ/(1 − λ) which, by L’Hospital’s
rule, tend to 1 and −1, respectively as λ → 1, so that, since the limit as λ → 1 of

∑n1+n2
j=1 λ j−1 is n1 + n2,

the derivative of the term ni
∑n1+n2

j=1 λ j−1/(n1 + n2) with respect to n1 tends to 1 if i = 1 and 0 if i = 2.
As λ → 1, the derivative of (13) with respect to n1 thus approaches

h1(ξ1) − EY

(
max
i=1,2

Eξ |Y(gi(ξi) | Y)

)
+

⎛
⎝ ∞∑

j=n1+n2+1

λ j−1

⎞
⎠ ∂EY(maxi=1,2 Eξ |Y(gi(ξi) | Y))

∂n1
.

The argument above gives an approximation to this derivative of

h1(ξ1) − max
i=1,2

gi(ξi) +

+

∞∑
j=n1+n2+1

λ j−1

n2
1

∫
−v1

(
g−1

1 (g2(ξ2))
)

2

(
g′

1(g
−1
1 (g2(ξ2)))

)
π

(
g−1

1 (g2(ξ2)), ξ2

)
dξ2,
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which, since
∑∞

j=n1+n2+1 λ j−1 = ∑∞
j=1 λ j−1 − ∑n1+n2

j=1 λ j−1, with the former term, which is equal to

(1 − λ)−1, dominating, gives the approximation

n∗
1 =

√∫
v1

(
g−1

1 (g2(ξ2))
)

g′
1

(
g−1

1 (g2(ξ2))
)
π

(
g−1

1 (g2(ξ2)), ξ2

)
dξ2

2(1 − λ)
(
E0

(
maxi=1,2 gi(ξi)

) − E0(h1(ξ1))
) . (14)

Writing N∗ = ∑∞
j=1 λ j−1 = (1 − λ)−1, (14) can be written as

n∗
1 =

√
N∗ ∫

v1

(
g−1

1 (g2(ξ2))
)

g′
1

(
g−1

1 (g2(ξ2))
)
π

(
g−1

1 (g2(ξ2)), ξ2

)
dξ2

2
(
E0

(
maxi=1,2 gi(ξi)

) − E0(h1(ξ1))
) ,

directly analogous to (10) with N∗ replacing N.
For n02 finite, n∗

2 is again given by symmetry by an expression analogous to (11). For n02 = ∞, n∗
2 = 0

and n∗
1 is given by an expression analogous to (12) with N replaced by N∗.

4 Examples

4.1 Single arm trials with Bernoulli data

We consider first the case of Bernoulli data. In this case the distribution of Yi j , the responses in
treatment group i, can be parameterised with ξi equal to the probability of treatment success. We
will take ξ1 to have a conjugate beta prior with parameters a1 and b1 so that y01 = a1/(a1 + b1) and
n01 = a1 + b1, and assume ξ2 is known with value y02, that is with n02 = ∞, so that n∗

2 = 0 and a
single-arm trial is optimal.

Given observation of dataY1 j = y1 j, j = 1, . . . , n1, ξ1 has a Beta(a1 + ∑n1
j=1 y1 j, b1 + n1 − ∑n1

j=1 y1 j )

posterior distribution, and the prior predictive distribution of
∑n1

j=1 Y1 j is Betabinomial(n1, a1, b1).
We will assume that the gain from patients receiving treatment i will be determined by whether or

not the treatment is successful, so that gi(ξi) = hi(ξi) = ξi, i = 1, 2. From (4) with n2 = 0, the prior
expected gain is thus n1E0(ξ1) + (N − n1)E0(EY(maxi=1,2 Eξ |Y(ξi) | Y)).

Following one of the examples considered by Cheng et al. (2003), we take a1 = 1 and b1 = 1, the
known value of ξ2 to be 0.5 and N = 100. Figure 1 shows the prior expected gain for a range of values
of n1, here plotted on a logarithmic scale. As given by Cheng et al. (2003), the optimal value of n1 is
equal to 9, which is marked with a plus sign. The approximation to the prior expected gain given by
(7) is also shown on the figure as a dashed line, showing that in this case the approximate and true
values are close even for small n1. The approximately optimal value of n1 given by (12) is 10. This is
shown by the circle on the figure, showing that this is close to the true optimum. In this case, this is
close to the value of n1 maximizing the approximation given by (7), though in general the additional
approximation leading to (12) means that this need not be the case.

Figure 2 gives values of n∗
1 from (12) along with exact optima for a range of values of N, with both

n∗
1 and N plotted on logarithmic scales so that the square root relationship between n∗

1 and N given by
(12) corresponds to a straight line with slope 1/2. The approximation given by (12) is close to the true
value, and approaches it as N increases as would be expected.

The effect of varying the prior distribution for ξ1 was also investigated. Web Figure 1 in Web
Appendix B shows the optimal sample size n∗

1 with N = 100 and ξ2 = 0.5 for a range of n01 = a1 + b1
and y01 = a1/(a1 + b1) values. When the prior mean value of ξ1, that is y01, is equal or greater than
the fixed value of ξ2, the optimal sample size increases with prior weight n01. This is reasonable since
as n01 increases we are increasingly confident that patients are not harmed by being in the trial and a
larger sample size gives more information for the final decision. When y01 is less than ξ2, the optimal
sample size increases with n01 for small n01, so that more information can be collected for the final
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Figure 1 Prior expected gain (solid line) and approximate prior expected gain (dashed line) for a
range of n1 for the first single-arm Bernoulli example with a1 = b1 = 1, ξ2 = 0.5, and N = 100. The
optimal and approximately optimal values of n1 are marked by + and ◦, respectively
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Figure 2 Optimal (solid lines with points) and approximately optimal (dashed lines) values for n1 for
a range of N values for the first single-arm Bernoulli example with a1 = b1 = 1 and ξ2 = 0.5.

decision and decreases for larger n01 when there is strong prior belief that treatment 2 is superior to
treatment 1. It is interesting to note that when the prior weight, n01, is kept fixed, the optimal sample
size increases as the prior mean y01 of treatment 1 increases. This is in contrast to frequentist sample
size that would decrease as the assumed success rate for treatment 1 is increased (and is larger than the
success rate of treatment 2).

We next consider an example based on Stallard (1998), who also considered a single-arm phase
II trial with a Bernoulli outcome. In this case the gain function was chosen to reflect the financial
costs and rewards associated with the conduct of the trial assuming that, if successful, it would be
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followed by a further trial with a frequentist design and analysis. Assuming the probability of success
for treatment 2, here taken to be the current standard treatment, to be known, costs and rewards
were taken relative to continuing to give all patients the current treatment. Thus if this treatment
is recommended, the gain to patients outside the trial is taken to be zero, that is g2 = 0. The gain
per patient outside the trial if the experimental treatment is recommended was taken to be of the
form g1(ξ1)= l (1 − �(zα/2 − (zα/2 + zβ )θ/θ1))− m where zα = �−1(1 − α), θ = logit(ξ1)− logit(ξ0),
θ1 = logit(ξ0 + δ0) − logit(ξ0), and logit(ξ ) = log(ξ/(1 − ξ )) for some l , α, β, and δ0. This form
reflects a fixed cost of m per patient with a gain of l per patient if the treatment is shown to be
effective in the subsequent trial where that trial has frequentist (one-sided) type I error rate of α/2 and
power 1 − β to detect a log-odds ratio of θ1. Stallard assumed linear discounting for j less than some
constant, n0, with geometric discounting for j > n0 whereas we will assume geometric discounting for
all j. Patients in the trial were taken to have constant (discounted) cost, that is h1(ξ1) = −k, for some
k. Since we know n2 = 0, it is not necessary to specify h2. The parameter ξ1 was again taken to have a
Beta(a1, b1) prior distribution. As the gain function g2(ξ2) does not depend on ξ2, it is not necessary
to specify a value for the point-prior for this parameter in this case.

Since g2(ξ2) = 0 for all ξ2, the expression (12) becomes

n∗
1 =

√
−Ng′

1(g
−1
1 (0))v1(g

−1
1 (0))π(g−1

1 (0))

2(E0(h1(ξ1)) − E0(max{g1(ξ1), 0})) (15)

where π(ξ1) is the (univariate) prior density for ξ1. The value of E0(max{g1(ξ1), 0}) can be evaluated
using numerical integration and, as h1 = −k, we have E0(h1(ξ1)) = −k.

Although the form of utility function proposed by Stallard (1998) was not exactly that proposed
here, based on values given, we took λ = exp(−0.00173) = 0.99827, l = 12.79, m = 0.346, α = 0.05,
β = 0.1, ξ0 = 0.2, δ0 = 0.15, a1 = 0.845 and b1 = 9.155. Figure 3 shows the prior distribution for ξ1
along with the form of g1(ξ1) in this case. Figure 4 shows the prior expected gain calculated exactly
using the betabinomal prior predictive distribution for

∑n1
j=1 Y1 j for a range of values of n1 values,

plotted on a logarithmic scale, along with the approximation given by (7). It can be seen that in this
case the approximation (7) to the expected gain is rather poor, particularly for smaller n1. The value of
n∗

1 obtained using (15) in this case is 102. This value and the associated prior expected gain is marked
on the figure by a circle. Note again that n∗

1 does not maximise the approximate gain given by (7) that
is shown by the dashed line on the plot. In this case n1 the value of n∗

1 is quite far from the value of n1
maximizing the approximate gain, though it is closer to the true optimal value of 95, which marked
on the figure by a plus sign.

Figure 5 gives values of n∗
1 from (15) along with exact optima for a range of values of N, again with

both plotted on a logarithmic scale. The approximation given by (15) is again close to the true value,
and approaches it as N increases as would be expected.

The effect of varying the prior distribution for ξ1 was again investigated, and again illustrated in Web
Appendix B. Web Figure 2 shows the optimal sample size n∗

1 with N = 5000 for a range of n01 = a1 + b1
and y01 = a1/(a1 + b1) values. In this case as y01 increases from 0.04 to 0.0845 the optimal sample
size is increased in a similar way to that noted for the example above. In this case as y01 increases
further, however, the optimal sample size is reduced. Here, since hi = −k, there is a cost associated
with experimentation so that when there is strong prior belief that treatment 1 is superior to treatment
2, rather than giving many patients treatment 1 in a trial, a smaller trial is optimal.

At the end of the trial, treatment 1 will be recommended if Eξ |Y(g1(ξ1) | Y) > 0. For large n1,
that is approximately if Eξ |Y(ξ1 | Y) > g−1

1 (0), which, using expression (1), is true when n1Ȳ1 >

g−1
1 (0)(n01 + n1) − n01y01. Considering recommendation of treatment 1 to correspond to rejection

of the null hypothesis that ξ1 = g−1
1 (0) = 0.201, frequentist error rates attained for the optimal designs

obtained can be derived.
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Figure 3 Prior distribution for ξ1 (upper panel) and gain function g1(ξ1) giving gain from treating
each future patient with treatment 1 (lower panel). The gain function g2(ξ2) = 0 is shown as a dashed
line on the right hand panel for comparison (see text for details).

With a prior distribution with a1 = 0.845 and b1 = 9.155, taking n1 = 102 gives a type I error rate
of 0.39. The form of g1(ξ1) shown in Fig. 3 suggests that we might require a test with high power when
ξ = 0.35, since this value of ξ1 is associated with a high gain value. The power of the optimal test in
this case is 0.999.

Type I and type II error rate values for the optimal designs and prior distributions considered in
Web Fig. 2 are shown in Web Fig. 3. As the prior weight becomes small, the optimal decision at the
end of the trial is to select treatment 1 whenever it has observed mean exceeding g−1

1 (0), so the type
I error rate approaches 0.5. As the prior weight increases, since in this case the optimal value of n1
is relatively small, prior information comes to dominate the final decision and the type I error rate
approaches zero or one, with the type II error approaching one or zero, depending on whether the
prior mean is less than or greater than g−1

1 (0).
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Figure 4 Prior expected gain (solid line) and approximate prior expected gain (dashed line) for a
range of n1 for the second single-arm Bernoulli example with N = 5000 (see text for details of gain
function and prior distribution parameter values). The optimal and approximately optimal values of
n1 are marked by + and ◦ respectively
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Figure 5 Optimal (solid lines with points) and approximately optimal (dashed lines) values for n1 for
a range of N values for the second single-arm Bernoulli example (see text for details of gain function
and prior distribution parameter values).

4.2 A two-arm trial with Poisson data

The third example is based on an example given by Berry et al. (1994), who describe a trial of
an HIB vaccine in Navajo children aged 2–18 months. The number of HIB cases is assumed to
follow a Poisson distribution. Rather than expressing n1, n2, and N in terms of child-months, we will
assume that all children are followed up for the entire 16-month period, and refer to the number
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of children in the trial and population. The observed number of cases per child j in group i, will
be denoted by Yi j, j = 1, . . . , ni, i = 1, 2. The distribution of Yi j can be parameterised such that ξ1
and ξ2 are the expected numbers of cases per child for treatments 1 (the new vaccine) and 2 (the
placebo), respectively. Thus p(yi j | ξi) = ξ

yi j
i exp(−ξi)/yi j !, j = 1, . . . , ni, i = 1, 2, so that yi j has mean

ξi, with ξi following independent prior gamma(αi, βi) distributions, that is with density π(ξ1, ξ2) =∏2
i=1 ξ

αi−1
i exp(−ξiβi)β

αi
i /(αi) for some αi, βi, i = 1, 2. Note that ξi has prior mean αi/βi and prior

variance αi/β
2
i . The posterior distribution of ξi given Y is a gamma (αi + ∑ni

j=1 yi j , βi + ni) distribution

and the prior predictive distribution of
∑ni

j=1 yi j is NegBin (αi, (1 + ni/βi)
−1).

Berry et al. (1994) include in their gain function a term that depends on the observed data that
reflects the probability of obtaining regulatory approval for the vaccine. Here, we assume the gain
from a child receiving treatment i depends on ξi alone and, since ξi gives the rate of HIB cases, which
we would like to minimize, we take gain functions hi(ξi) = gi(ξi) = −ξi, i = 1, 2. The case of gain
functions that depend on the observed data is considered briefly in the discussion section below.

The optimal values may be approximated using expressions (10) and (11). In this case vi(ξi) = ξi,
g′

i(ξi) = −1, and g−1
2 (g1(ξ )) = g−1

1 (g2(ξ )) = ξ so that, for example, n∗
1 is

√
N

∫
ξπ(ξ, ξ )dξ

2(E0(maxi=1,2(−ξi)) − E0(−ξ1))
=

√
N

∫
ξπ(ξ, ξ )dξ

2(E0(ξ1) − E0(mini=1,2 ξi))
,

the integral in the numerator being equal to

∫
ξ
ξα1−1 exp(−ξβ1)β

α1
1 ξα2−1 exp(−ξβ2)β

α2
2

(α1)(α2)
dξ = (α1 + α2)β

α1
1 β

α2
2

(α1)(α2)(β1 + β2)
(α1+α2 )

.

Following Berry et al. (1994), we take (α1, β1) = (1, 200) and (α2, β2) = (5, 667), the latter corre-
sponding to the placebo (note that the βi values given by Berry et al. are 16 times those used here
as they take ξi to give the rate of cases per child-month). Berry et al. report that approximately 5400
Navajo are born each year so that minimization of HIB cases over a 20-year period would correspond
to N = 108,000. Figure 6 shows a contour plot giving the prior expected gain for this N for a range of
n1 and n2 values (plotted on logarithmic scales) together with the approximation given by (7) (dashed
lines). It can be seen that even for small sample sizes, (7) gives a close approximation to the true prior
expected gain. The optimal design has n1 = 3162 and n2 = 1585, and is marked by the plus sign. The
approximately optimal design given by (10) and (11) has n∗

1 = 3524 and n∗
2 = 2089, and is marked by

a circle. The prior expected gain, in this case corresponding to minus one times the prior expected
number of HIB cases in the population over the 20 year period, is −416.9 using the optimal design
and −417.4 using the approximately optimal design.

Figure 7 shows the values of n∗
1 and n∗

2 along with the approximations from (10) and (11) (dashed
lines) for a range of N values, again with both plotted on logarithmic scales. It can again be seen how
the approximations become increasingly accurate as N increases.

The effect of varying the prior distributions for ξ1 and ξ2 was again investigated. Web Fig. 4 in
Web Appendix B shows the optimal sample sizes, n∗

1 and n∗
2, for a range of prior means and prior

weights, here equal for the two priors, when N = 108,000. When the prior means are equal, the
optimal sample size increases with prior weight. For unequal prior means, more patients are assigned
to the arm considered a priori to be superior, in this case corresponding to a lower prior mean since
hi(ξi) = gi(ξi) = −ξi, with the number assigned to the inferior arm increasing with prior weight when
this is small and decreasing for larger prior weight values. Web Fig. 5 shows the effect of changing the
prior weight for ξ1 alone when the prior mean is equal to, greater than or less than that for ξ2. In this
case increasing the prior weight leads to an increase in the optimal sample size for both arms, with the
arm with the lower prior mean having a smaller optimal sample size.
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Figure 6 Contour plot of prior expected gain (solid lines) and approximate prior expected gain
(dashed lines) for N = 108,000 for a range of n1 and n2 values assuming gamma (1, 200) and gamma
(5, 667) prior distributions. The optimal and approximately optimal values of n1 and n2 are marked by
+ and ◦, respectively.
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Figure 7 Optimal (solid lines with points) and approximately optimal (dashed lines) values for n1
(upper lines) and n2 (lower lines) for a range of N values assuming gamma (1, 200) and gamma
(5, 667) prior distributions.

The examples above compare the large sample approximation for the optimal sample size for arm
i, n∗

i , given by expression (10), with that obtained by exact numerical optimization in two examples,
enabling assessment of the approximation for smaller values of N. The derivation of (10) relies on large
sample approximations in two ways; first the distribution of the posterior expected utility E (gi(ξi) | Ȳ)
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is approximated by its asymptotic normal form in (5) using the central limit theorem and the delta
method, and second, the derivative of the expected gain, given by (8) is approximated by (9). The first
approximation is exact when Yi j are normally distributed and gi(ξi) are linear. The first and second
examples suggest that both approximations are sufficiently accurate for Bernoulli data even for quite
small N when gi(ξi) are linear, but less so for nonlinear gi(ξi), when the first approximation may be poor,
as noted by Bernado and Smith (2000). For nonnormal data the accuracy of the first approximation
also improves as the prior weight n0i increases, though, as illustrated in the third example above, this
also leads to smaller n∗

i , so that the overall accuracy of the asymptotic approximation to the optimal
sample size might be poorer.

5 Discussion

The work reported above leads to expressions for the optimal sample size in a clinical trial to compare
two treatments or to compare a single experimental treatment with a historical control the properties of
which are assumed known. The observed data for patients receiving treatment i are assumed to follow
a distribution of one parameter exponential family form, with mean ξi assumed to have a conjugate
prior distribution. Optimization is based on consideration of the costs and benefits both from patients
in the trial, given by some utility function, hi(ξi) for patients receiving treatment i, and from subsequent
patients who will receive treatment i based on the results of the trial, given by some function gi(ξi) if
they receive treatment i. Although the expressions obtained could be directly used to design a trial, it is
also of more general interest to see how the optimal sample size depends on the size of the population
under investigation. We have shown that if the population is assumed to be of some known size, N, for
any hi and gi satisfying sufficient regularity conditions for expectations to exist, differentiable with gi
strictly increasing, and satisfying the condition given by (2); that is E0(hi(ξi)) ≤ E0(maxi=1,2(gi(ξi))),
the optimal sample size is O(N1/2) as N → ∞. If it is assumed that there is an infinite population with
geometric discounting with discounting factor λ, under the same conditions the optimal sample size
is O(N∗1/2) as N∗ → ∞ where N∗ = (1 − λ)−1. This extends previous work by Cheng et al. (2003).

Although we have considered general functions hi(ξi) and gi(ξi), giving the gain to patients inside
and outside the trial who receive treatment i, i = 1, 2, we have assumed that these are functions of ξi
only. This is a common assumption and it seems reasonable that the benefit to a patient from taking
a given treatment will depend only on the properties of that treatment (see, e.g. Lindley, 1997, who
cites the seminal work by Raiffa and Schlaifer, 1961). Noting, however, that the gain functions gi
correspond to gain from future patients if the trial indicates that treatment i is superior, some authors
have proposed gain functions for patients treated following the trial that depend, in addition to ξi, on
the observed trial data, Y. In particular, gain functions have been proposed that reflect the fact that
use of a novel treatment following a trial may depend on regulatory decisions that in turn depends on
whether trial results are sufficiently compelling (see, e.g. Posch and Bauer, 2013). In both of the more
realistic examples described above, the gain functions given by Stallard (1998) and Berry et al. (1994)
depended on Y, and we have simplified the gain functions when discussing these examples above.

The forms of the utility functions hi and gi, i = 1, 2 given above were motivated by consideration of
the gain to each patient from participation in the trial or from being treated with treatment i following
the trial, suggesting that the trial sample size is optimised from the patient’s perspective. The general
form of the expected gain given by (3), however, can express any gain so long as this can be specified
on a per-patient basis. The results obtained could thus also apply to financial gains from a commercial
perspective or to societal gains from development of a novel therapy. In the latter cases it may be more
appropriate for hi and gi to have a more complex form or to depend on trial data as discussed above.

The condition (2) ensures that the gain per patient in the trial does not exceed that per patient
outside the trial if patients were to receive optimal treatment. If this does not hold the optimal design
will be to continue with trial forever, giving all patients the treatment for which the prior expected
gain E0(hi(ξi)) is the largest. This restriction on hi and gi seems reasonable if hi reflects not only the
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benefit to patients in the trial receiving treatment i, but also the cost of the trial, either in financial
terms for the trial sponsor or funder or in terms of commitment by the patient, both of which may be
considerable.

It is interesting to compare the optimal sample sizes obtained above with sample sizes typical
for clinical trials. In particular, it might be of interest to consider the size of population for which
conventional sample sizes would correspond to that of the optimal design. A method for frequentist
sample size calculations for a single arm trial with a Bernoulli response is given by Fleming (1982),
who shows that the sample size required for a trial with (one-sided) type I error rate α and power
1 − β to detect an improvement to a success probability of p1 from a control success probability of p0

as p1 → p0 is (
√

p0(1 − p0)�
−1(1 − α) + √

p1(1 − p1)�
−1(1 − β))2/(p1 − p0)

2. As discussed above,
the form of g1(ξ1) given in the second single arm Bernoulli data example above and shown in Fig. 3
suggests that an appropriate value for p1 might be about 0.35, since this value of ξ1 is associated with
a high gain value. For α = 0.025 and β = 0.9, this would give a sample size of 111. Using the gain
function described above, this would be optimal for a population of size, or expected population size
in the case of geometric discounting, of about 3000. The prior distribution used in the example above,
and also shown in Figure 3 is such that a value of ξ1 as large as 0.35 is highly unlikely, suggesting that a
smaller value could be used for p1 in the frequentist sample size calculation. The 95th percentile of the
prior distribution is 0.256. To give power of 0.9 to detect a treatment effect corresponding to this value
of p1 would require a sample size of 704. This would be optimal for an expected population of size of
a little over 100,000. It is important to note that even when the sample sizes are similar, the optimal
designs obtained above may be very different from those obtained using the usual frequentist approach
as, following the trial, a treatment is recommended depending on the posterior expected gains rather
than on the basis of type I error rate control. As seen above, depending on the prior distribution,
this can lead to type I error rates considerably higher than those conventionally used in large-scale
confirmatory studies. In this regard, the designs obtained are more similar to those sometimes used for
early-phase clinical trials or pilot studies (Schoenfeld, 1980; Stallard, 2012). Further comparison of
frequentist and decision-theoretic approaches is an area where further research would be of interest.
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