L. H. Rosa, A. Vieira-mde, L. Santiago, I. F. Rosa, and C. A. , Endophytic fungi 484 community associated with the dicotyledonous plant Colobanthus quitensis, p.485, 2010.

. Bartl, Caryophyllaceae) in Antarctica, FEMS Microbiol. Ecol, vol.73, pp.178-189

P. Zalar, M. Novak, G. S. De-hoog, and N. Gunde-cimerman, Dishwashers--a man-487 made ecological niche accommodating human opportunistic fungal pathogens, Fungal 488 Biol, vol.115, pp.997-1007, 2011.

P. Ngamskulrungroj, J. Price, T. Sorrell, J. R. Perfect, and W. Meyer, Cryptococcus 490 gattii virulence composite: candidate genes revealed by microarray analysis of high and 491 less virulent Vancouver island outbreak strains, PLoS One, vol.6, p.16076, 2011.

K. Volling, A. Thywissen, A. A. Brakhage, and H. P. Saluz, , p.493, 2011.

, Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt 494 signalling, Cell. Microbiol, vol.13, pp.1130-1148

B. Jahn, A. Koch, A. Schmidt, G. Wanner, H. Gehringer et al., Isolation and characterization of a pigmentless-conidium mutant of Aspergillus f 497 umigatus with altered conidial surface and reduced virulence, Infect. Immun, vol.496, pp.5110-5117, 1997.

H. F. Tsai, M. H. Wheeler, Y. C. Chang, and K. Kj, A developmentally 500 regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus, 1999.

, J. Bacteriol, vol.181, pp.6469-6477

J. Schmaler-ripcke, V. Sugareva, P. Gebhardt, R. Winkler, and O. Kniemeyer, Production of pyomelanin, a second type of melanin, via the 504 tyrosine degradation pathway in Aspergillus fumigatus, Appl. Environ. Microbiol. 505, vol.75, pp.493-503, 2009.

H. C. Eisenman and A. Casadevall, Synthesis and assembly of fungal melanin, 2012.

. Microbiol and . Biotechnol, , vol.93, pp.931-940

L. Y. Chai, M. G. Netea, J. Sugui, A. G. Vonk, W. W. Van-de-sande et al., , p.509

K. B. Kj, Aspergillus fumigatus conidial melanin modulates host cytokine 510 response, Immunobiology, vol.215, pp.915-920, 2010.

M. Pihet, P. Vandeputte, G. Tronchin, G. Renier, P. Saulnier et al., , p.512

D. Chabasse, F. Symoens, and J. P. Bouchara, Melanin is an essential component for the 513 integrity of the cell wall of Aspergillus fumigatus conidia, BMC Microbiol, vol.9, p.11, 2009.

S. Keller, J. Macheleidt, K. Scherlach, J. Schmaler-ripcke, and I. D. Jacobsen, Pyomelanin formation in Aspergillus fumigatus requires HmgX 516 and the transcriptional activator HmgR but is dispensable for virulence, PLoS One, vol.517, p.26604, 2011.

V. Sugareva, A. Hartl, M. Brock, K. Hubner, M. Rohde et al., Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-520 like melanin gene cluster of Aspergillus fumigatus, Arch. Microbiol, vol.519, p.13, 2006.

H. F. Tsai, I. Fujii, A. Watanabe, M. H. Wheeler, and Y. C. Chang,

K. J. Kwon-chung, Pentaketide melanin biosynthesis in Aspergillus fumigatus 523 requires chain-length shortening of a heptaketide precursor, J. Biol. Chem, vol.276, p.14, 2001.

H. F. Tsai, R. G. Washburn, Y. C. Chang, and K. Kj, Aspergillus fumigatus 526 arp1 modulates conidial pigmentation and complement deposition, Mol. Microbiol, vol.527, p.15, 1997.

I. Fujii, Y. Yasuoka, H. F. Tsai, Y. C. Chang, K. J. Kwon-chung et al., , 2004.

, Hydrolytic polyketide shortening by ayg1p, a novel enzyme involved in fungal melanin 530 biosynthesis, J. Biol. Chem, vol.279, pp.44613-44620

K. Langfelder, B. Jahn, H. Gehringer, A. Schmidt, G. Wanner et al., 532 Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in 533 conidial pigment biosynthesis and virulence, Med. Microbiol. Immunol, vol.187, p.17, 1998.

S. Slesiona, M. Gressler, M. Mihlan, C. Zaehle, M. Schaller et al., Persistence versus escape: Aspergillus terreus and Aspergillus 536 fumigatus employ different strategies during interactions with macrophages, PLoS One, vol.537, p.539, 2012.

A. A. Brakhage, Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic, vol.540, 2011.

, Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway

. Microbiol, , vol.2, p.96

K. Luther, A. Torosantucci, A. A. Brakhage, J. Heesemann, and F. Ebel, Phagocytosis 543 of Aspergillus fumigatus conidia by murine macrophages involves recognition by the 544 dectin-1 beta-glucan receptor and Toll-like receptor 2, Cell. Microbiol, vol.9, pp.368-381, 2007.

A. L. Rosas, J. D. Nosanchuk, B. L. Gomez, W. A. Edens, J. M. Henson et al., , 2000.

, Isolation and serological analyses of fungal melanins, J. Immunol. Methods, vol.244, pp.69-80

S. Youngchim, M. , R. Hay, R. J. Hamilton, A. Beauvais et al., Two alpha(1-3) glucan synthases with different functions in Aspergillus 551 fumigatus, Appl. Environ. Microbiol, vol.53, p.23, 2004.

V. Aimanianda, C. Clavaud, C. Simenel, T. Fontaine, M. Delepierre et al., , 2009.

A. Beauvais, S. Bozza, O. Kniemeyer, C. Formosa, V. Balloy et al., ,6)-glucan of Saccharomyces cerevisiae: structural characterization and 554 in situ synthesis, Cell wall beta, vol.284, issue.1, p.556

E. Dague, M. Chignard, A. A. Brakhage, L. Romani, and J. P. Latgé, Deletion of the 557 alpha-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall 558 Responsible for the Avirulence of Aspergillus fumigatus, PLoS Pathog, vol.9, p.38, 2013.

G. Andre, S. Kulakauskas, M. P. Chapot-chartier, B. Navet, M. Deghorain et al., , p.600

P. Hols and Y. F. Dufrêne, Imaging the nanoscale organization of peptidoglycan in 601 living Lactococcus lactis cells, Nat. Commun, vol.1, p.39, 2010.

D. Alsteens, H. Trabelsi, P. Soumillion, and Y. F. Dufrene, Multiparametric atomic force 603 microscopy imaging of single bacteriophages extruding from living bacteria, Nat. 604 Commun, vol.4, p.40, 2013.

A. Beaussart, D. Alsteens, S. El-kirat-chatel, P. N. Lipke, S. Kucharikova et al., , p.606

Y. F. Dufrêne, Single-molecule imaging and functional analysis of Als adhesins and 607 mannans during Candida albicans morphogenesis, ACS Nano, vol.6, p.41, 2012.

E. Dague, D. Alsteens, J. P. Latge, C. Verbelen, D. Raze et al., 609 Chemical force microscopy of single live cells, Nano Lett, vol.7, p.42, 2007.

D. Alsteens, V. Aimanianda, P. Hegde, S. Pire, R. Beau et al., Unraveling the nanoscale surface properties of chitin synthase mutants of 612, 2013.

L. Alcazar-fuoli, C. Clavaud, C. Lamarre, V. Aimanianda, V. Seidl-seiboth et al., Functional analysis of the fungal/plant class chitinase family in 615 Aspergillus fumigatus, Fungal Genet. Biol, vol.105, p.44, 2011.

B. Singh, M. Oellerich, R. Kumar, M. Kumar, D. P. Bhadoria et al., , p.617

G. L. Sharma and A. R. Asif, Immuno-reactive molecules identified from the secreted 618 proteome of Aspergillus fumigatus, J. Proteome Res, vol.9, p.45, 2010.

D. Sriranganadane, P. Waridel, K. Salamin, U. Reichard, and E. Grouzmann,

M. Quadroni and M. Monod, Aspergillus protein degradation pathways with different 621 secreted protease sets at neutral and acidic pH, J. Proteome Res, vol.9, p.46, 2010.

D. Wartenberg, K. Lapp, I. D. Jacobsen, H. M. Dahse, O. Kniemeyer et al., , p.623

A. A. Brakhage, Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin 624 as a major secreted protein, Int. J. Med. Microbiol, vol.301, p.47, 2011.

T. Heinekamp, A. Thywissen, J. Macheleidt, S. Keller, V. Valiante et al., , p.626, 2012.

S. P. Templeton, A. P. Nayak, J. M. Hettick, B. F. Law, B. J. Green et al., Pulmonary immune responses to Aspergillus fumigatus in an 630 immunocompetent mouse model of repeated exposures, Aspergillus fumigatus melanins: interference with the host endocytosis pathway and 627 impact on virulence. Front. Microbiol. 3:440. 628 48. Buskirk AD, vol.11, p.632, 2014.

R. Beau, S. Krappmann, A. Beauvais, Y. F. Dufrêne, C. Roncero et al., Chitin 633 synthases with a myosin motor-like domain control the resistance of Aspergillus 634 fumigatus to echinocandins, Antimicrob. Agents Chemother, vol.56, p.639, 2011.

B. J. Kullberg, C. A. O'callaghan, C. C. Sheth, F. C. Odds, A. J. Brown et al., Gow 640 alkali soluble polysaccharide fraction of A. fumigatus cell wall (AS-DC, p.48

, The percentage expression of CD83, CD86, and mean fluorescence intensities (MFI) of

, DCs 675 were treated with 1 ?g of DHN melanin from WT conidia (left panels) or 1 ?g of alkali soluble 676 polysaccharide fraction of A. fumigatus cell wall (AS; positive control) (right panels) for 677 indicated time points. The phosphorylation of ERK1/2 (pERK1/2) and p38 MAPK (pp38) was 678 analyzed by immunoblotting, CD80 were analyzed by flow cytometry. Data (mean ± SEM) are from four donors. (B), p.680

, and 1 ?g of melanin extracts from WT conidia or cytokines and 1 ?g of alkali-soluble, AS), p.681

, Following extensive washing, DCs were co-682 cultured with CD4 + T cells at various DC:T cell ratios. The T cell proliferation was quantified by 683 ( 3 H) thymidine incorporation and values are presented as counts per minute (cpm). (D) The CD4 + 684

, IFN-? and IL-5 in the above DC-T cell co-cultures were quantified and 685 presented as pg/ml. Data (mean ± SEM) are from four donors. The level of statistical significance 686 is indicated

, AFM imaging reveals that the loss of melanin correlates with the lack of exposed 689 rodlet layer. AFM deflection images of the surface of ?pksP (A-C), vol.5, p.690

(. ?arp1, W. , D. , G. , J. et al., Black labels R and A indicate regions made of 692 rodlets and amorphous materials, vol.691