Y. Arnson, Y. Shoenfeld, and H. Amital, Intravenous immunoglobulin therapy for autoimmune diseases, Autoimmunity, vol.42, pp.553-560, 2009.

J. Bayry, V. S. Negi, and S. V. Kaveri, Intravenous immunoglobulin therapy in rheumatic diseases, Nat. Rev. Rheumatol, vol.7, pp.349-359, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455562

J. D. Lunemann, F. Nimmerjahn, and M. C. Dalakas, Intravenous immunoglobulin in neurology-mode of action and clinical efficacy, Nat. Rev. Neurol, vol.11, pp.80-89, 2015.

A. Greco, Kawasaki disease: an evolving paradigm, Autoimmun. Rev, vol.14, pp.703-709, 2015.

M. Buttmann, S. Kaveri, and H. P. Hartung, Polyclonal immunoglobulin G for autoimmune demyelinating nervous system disorders, Trends Pharmacol. Sci, vol.34, pp.445-457, 2013.

M. Ballow, The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders, J. Allergy Clin. Immunol, vol.127, pp.315-323, 2011.

J. F. Seite, Y. Shoenfeld, P. Youinou, and S. Hillion, What is the contents of the magic draft IVIg?, Autoimmun. Rev, vol.7, pp.435-439, 2008.

T. Tha-in, J. Bayry, H. J. Metselaar, S. V. Kaveri, and J. Kwekkeboom, Modulation of the cellular immune system by intravenous immunoglobulin, Trends Immmunol, vol.29, pp.608-615, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02455606

E. W. Gelfand, Intravenous immune globulin in autoimmune and inflammatory diseases, N. Engl. J. Med, vol.367, pp.2015-2040, 2012.

M. G. Danieli, Subcutaneous IgG in immune-mediate diseases: proposed mechanisms of action and literature review, Autoimmun. Rev, vol.13, pp.1182-1188, 2014.

R. M. Anthony, F. Wermeling, M. C. Karlsson, and J. V. Ravetch, Identification of a receptor required for the anti-inflammatory activity of IVIG, Proc. Natl. Acad. Sci. USA 105, pp.19571-19578, 2008.

A. R. Crow, S. Song, J. W. Semple, J. Freedman, and A. H. Lazarus, A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg?, Blood, vol.109, pp.155-158, 2007.

J. F. Seite, C. Goutsmedt, P. Youinou, J. O. Pers, and S. Hillion, Intravenous immunoglobulin induces a functional silencing program similar to anergy in human B cells, J. Allergy Clin. Immunol, vol.133, pp.181-188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00926676

S. C. Jordan, M. Toyoda, and A. A. Vo, Intravenous immunoglobulin a natural regulator of immunity and inflammation, Transplantation, vol.88, pp.1-6, 2009.

I. Schwab and F. Nimmerjahn, Intravenous immunoglobulin therapy: how does IgG modulate the immune system?, Nat. Rev. Immunol, vol.13, pp.176-189, 2013.

M. Sharma, Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients, Sci. Rep, vol.4, p.5672, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358914

I. K. Campbell, Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils, J. Immunol, vol.192, pp.5031-5038, 2014.

M. S. Maddur, Immunomodulation by intravenous immunoglobulin: role of regulatory T cells, J. Clin. Immunol, vol.30, issue.1, pp.4-8, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02455581

L. P. Cousens, Tregitope update: mechanism of action parallels IVIg, Autoimmun. Rev, vol.12, pp.436-443, 2013.

S. Q. Nagelkerke, Inhibition of FcgammaR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcgammaRIIb in human macrophages, Blood, vol.124, pp.3709-3718, 2014.

C. Galeotti, S. V. Kaveri, and J. Bayry, Molecular and immunological biomarkers to predict IVIg response, Trends Mol. Med, vol.21, pp.145-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01117084

N. G. Abraham and A. Kappas, Pharmacological and clinical aspects of heme oxygenase, Pharmacol. Rev, vol.60, pp.79-127, 2008.

A. A. Chora, Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation, J. Clin. Invest, vol.117, pp.438-447, 2007.

S. W. Chung, X. Liu, A. A. Macias, R. M. Baron, and M. A. Perrella, Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice, J. Clin. Invest, vol.118, pp.239-247, 2008.

C. M. Hu, H. H. Lin, M. T. Chiang, P. F. Chang, and L. Y. Chau, Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice, Diabetes, vol.56, pp.1240-1247, 2007.

D. Willis, A. R. Moore, R. Frederick, and D. A. Willoughby, Heme oxygenase: a novel target for the modulation of the inflammatory response, Nat. Med, vol.2, pp.87-90, 1996.

M. U. Shiloh, P. Manzanillo, and J. S. Cox, Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection, Cell Host Microbe, vol.3, pp.323-330, 2008.

H. O. Pae, Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production, J. Immunol, vol.172, pp.4744-4751, 2004.

A. Yachie, Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency, J. Clin. Invest, vol.103, pp.129-135, 1999.

Z. W. Xia, Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-1, Am. J. Pathol, vol.171, pp.1904-1914, 2007.

S. Zelenay, A. Chora, M. P. Soares, and J. Demengeot, Heme oxygenase-1 is not required for mouse regulatory T cell development and function, Int. Immunol, vol.19, pp.11-18, 2007.

L. E. Otterbein, M. P. Soares, K. Yamashita, and F. H. Bach, Heme oxygenase-1: unleashing the protective properties of heme, Trends Immunol, vol.24, pp.449-455, 2003.

L. E. Otterbein, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat. Med, vol.6, pp.422-428, 2000.

S. A. Rushworth, D. J. Macewan, and M. A. O'connell, Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes, J. Immunol, vol.181, pp.6730-6737, 2008.

, Scientific RepoRts |, vol.6, 19592.

C. Chauveau, Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression, Blood, vol.106, pp.1694-1702, 2005.

S. Remy, Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity, J. Immunol, vol.182, pp.1877-1884, 2009.

J. Bayry, Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin, Blood, vol.101, pp.758-765, 2003.

A. S. Tjon, Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production, J. Immunol, vol.192, pp.5625-5634, 2014.

L. Padet, L. Loubaki, and R. Bazin, Induction of PD-L1 on monocytes: a new mechanism by which IVIg inhibits mixed lymphocyte reactions, Immunobiology, vol.219, pp.687-694, 2014.

J. Trinath, Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells, Blood, vol.122, pp.1419-1427, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455532

S. Othy, Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1-mammalian target of rapamycin axis, J. Immunol, vol.190, pp.4535-4541, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455535

B. M. Fiebiger, J. Maamary, A. Pincetic, and J. V. Ravetch, Protection in antibody-and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs, Proc. Natl. Acad. Sci. USA, vol.112, pp.2385-2394, 2015.

M. S. Maddur, Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin, J. Allergy Clin. Immunol, vol.127, pp.823-830, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455567

M. S. Maddur, Inhibitory effect of IVIG on IL-17 production by Th17 cells is independent of anti-IL-17 antibodies in the immunoglobulin preparations, J. Clin. Immunol, vol.33, pp.62-66, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455547

M. S. Maddur, Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation, Cell. Mol. Immunol, vol.12, pp.650-652, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02455500

A. Kessel, Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function, J. Immunol, vol.179, pp.5571-5575, 2007.

J. Bayry, L. Mouthon, and S. V. Kaveri, Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease, J. Rheumatol, vol.39, pp.450-451, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02455584

A. H. Massoud, Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells, J. Allergy Clin. Immunol, vol.133, pp.853-863, 2014.

G. A. Visner, Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin, Circulation, vol.107, pp.911-916, 2003.

K. Nakahira, Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts, J. Exp. Med, vol.203, pp.2377-2389, 2006.

S. Sakaguchi, M. Miyara, C. M. Costantino, and D. A. Hafler, FOXP3+ regulatory T cells in the human immune system, Nat. Rev. Immunol, vol.10, pp.490-500, 2010.

B. M. Choi, H. O. Pae, Y. R. Jeong, Y. M. Kim, and H. T. Chung, Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression, Biochem. Biophys. Res. Commun, vol.327, pp.1066-1071, 2005.

M. Biburger, G. Theiner, M. Schadle, G. Schuler, and G. Tiegs, Pivotal Advance: Heme oxygenase 1 expression by human CD4+ T cells is not sufficient for their development of immunoregulatory capacity, J. Leukoc. Biol, vol.87, pp.193-202, 2010.

J. F. George, Suppression by CD4+ CD25+ regulatory T cells is dependent on expression of heme oxygenase-1 in antigenpresenting cells, Am. J. Pathol, vol.173, pp.154-160, 2008.

Y. Zhang, L. Zhang, J. Wu, C. Di, and Z. Xia, Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response, J. Biol. Chem, vol.288, pp.34612-34626, 2013.

S. M. Farooq and H. M. Ashour, Eye-mediated induction of specific immune tolerance to encephalitogenic antigens, CNS Neurosci. Ther, vol.19, pp.503-510, 2013.

A. P. Robinson, C. T. Harp, A. Noronha, and S. D. Miller, The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment, Handb. Clin. Neurol, vol.122, pp.173-189, 2014.

J. Bayry, H. P. Hartung, and S. V. Kaveri, IVIg for relapsing-remitting multiple sclerosis: promises and uncertainties, Trends Pharmacol. Sci, vol.36, pp.419-421, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155485

M. S. Maddur, S. V. Kaveri, and J. Bayry, Comparison of different IVIg preparations on IL-17 production by human Th17 cells, Autoimmun. Rev, vol.10, pp.809-810, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455563

M. S. Maddur, Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand, Nat. Commun, vol.5, p.4092, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455506