Skip to Main content Skip to Navigation
Journal articles

Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin

Abstract : Intravenous immunoglobulin G (IVIG) is used in the therapy of various autoimmune and inflammatory conditions. The mechanisms by which IVIG exerts anti-inflammatory effects are not completely understood. IVIG interacts with numerous components of the immune system including dendritic cells, macrophages, T and B cells and modulate their functions. Recent studies have reported that heme oxygenase-1 (HO-1) pathway plays an important role in the regulation of inflammatory response in several pathologies. Several therapeutic agents exert anti-inflammatory effects via induction of HO-1. Therefore, we aimed at exploring if anti-inflammatory effects of IVIG are mediated via HO-1 pathway. Confirming the previous reports, we report that IVIG exerts anti-inflammatory effects on innate cells as shown by the inhibitory effects on IL-6 and nitric oxide production and confers protection in experimental autoimmune encephalomyelitis (EAE) model. However, these effects were not associated with an induction of HO-1 either in innate cells such as monocytes, dendritic cells and macrophages or in the kidneys and liver of IVIG-treated EAE mice. Also, inhibition of endogenous HO-1 did not modify anti-inflammatory effects of IVIG. These results thus indicate that IVIG exerts anti-inflammatory effects independent of HO-1 pathway.
Complete list of metadata

Cited literature [61 references]  Display  Hide  Download
Contributor : Jagadeesh Bayry Connect in order to contact the contributor
Submitted on : Sunday, January 26, 2020 - 11:15:19 AM
Last modification on : Friday, December 3, 2021 - 11:43:11 AM
Long-term archiving on: : Monday, April 27, 2020 - 3:45:50 PM


Publisher files allowed on an open archive



Caroline Galeotti, Pushpa Hegde, Mrinmoy Das, Emmanuel Stephen-Victor, Fernando Canale, et al.. Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin. Scientific Reports, Nature Publishing Group, 2016, 6 (1), pp.19592. ⟨10.1038/srep19592⟩. ⟨inserm-02455477⟩



Record views


Files downloads